Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After Insects Attack, Plants Bunker Sugars for later Regrowth

07.09.2006
One gene activates a rapid SOS (save our sugars) response in young green leaves after attack by insect larvae

Using radioactive carbon and genetically modified native tobacco plants (Nicotiana attenuata), scientists at Max Planck Institutes in Jena and Golm (Potsdam) and at the Research Centre in Jülich have discovered the first gene mediating tolerance to herbivore attack: GAL83, the beta-subunit of Nicotiana attenuata’s SNF-1 related kinase. This gene mediates a rapid herbivore-elicited carbon-hoarding behaviour in which recently assimilated carbon (measured with 11CO2) is squirrelled away to the roots rather than transported to young expanding leaves, to be used later to extend the period of seed and flower production when the plant is done growing. As soon as the plants are attacked by the larvae of the nicotine-resistant tobacco hornworm, Manduca sexta, elicitors from this herbivore’s mouth (called FACs - fatty acid conjugates), which also tune the plant’s induced defence responses, are shown in this study to activate carbon storage in the roots. By reconfiguring where it stores carbon, the plant gains a measure of tolerance and thereby the ability to withstand voracious herbivores.


Using radioactive short-lived carbon isotopes (11C, with a half-life of 20.4 minutes), scientists have measured transport processes of sugars after plant-insect interaction in wild type and transgenic plants. Image: Dirk Schwachtje


Manduca sexta larvae (tobacco hornworm) feeding on the wild annual tobacco Nicotiana attenuata in the Great Basin Desert, Utah, USA. These voracious larvae often completely defoliate plants, largely due to their ability to cope with the plant’s induced defences. To reduce fitness loss from attacks by this adapted herbivore, the plant recognizes the attack and activates a kinase complex which directs photoassimilates (sugars) to the roots for storage and later mobilization to support seed production when the larvae has pupated and is no longer a threat for the plant. Image: Danny Keßler, MPI Chemical Ecology

Ecological studies conducted in the department of Prof. Ian T. Baldwin at the Max Planck Institute for Chemical Ecology in Jena, Germany, focus on the defense of plants against attack from herbivores. Plants respond to attack by producing an arsenal of direct (toxins, digestibility reducers, etc.) and indirect defences that reduce the attackers' performance, thereby lessening the amount of damage inflicted to the plant. However, the co-evolutionary dynamics of the interaction often leads to herbivores that are adapted to the plant’s defences. Resolution of this evolutionary impasse may require the kind of solution advocated by Mahatma Gandhi: tolerate the damage. Or, with regard to plants: make the necessary physiological adjustments to minimize the fitness consequences of lost tissues. Tolerance may be the best strategy for a plant caught in cycles of defensive escalation with its herbivores to extricate itself.

Wild tobacco, which is native to North America, has developed sophisticated methods to fend off Manduca sexta larvae. For example, jasmonic acid produced after insect attack elicits the emission of volatiles that attract Manduca sexta predators. These insect predators kill caterpillars (Kessler and Baldwin, 2001). Yet even such a complex defense system does not guarantee the plants’ survival. Therefore the plants have developed ways of tolerating defoliation by these insect pests: by bunkering resources in below-ground protected sites when they are attacked - just as humans do in crisis situations. In previous studies, Prof. Baldwin and his colleagues have shown that wild tobacco minimizes the production and transport of the toxin, nicotine, in the leaves when attacked by Manduca sexta, because the value of this defense is reduced against nicotine-adapted attackers. Nitrogen, which is part of nicotine, may be used more effectively in other ways. This seems to apply to carbon, too, which is assimilated from carbon dioxide during photosynthesis. As important energy source, carbon is commonly stored as sugar or starch. The scientists found that molecules in the oral secretions of Manduca sexta larvae activate the downregulation of the expression of a protein kinase activator (GAL83) in the plant tissue via a signalling cascade that remains unknown. GAL83 is not unknown in the animal kingdom and in microorganisms: it is the beta-subunit of a protein complex (SNF1 related kinases), which regulates the use of glucose or galactose in mammals and yeast - especially during times of energy deficiency. SNF1 kinases function as posttranslational modificators and can up- or downregulate the activity of metabolic enzymes by means of phosphorylation.

Prof. Baldwin and his coworkers identified GAL83 when they were examining changes in gene expression in young, photosynthetically active leaves that had been attacked by insect larvae. Using the differential RNA display method, they found remarkably few transcripts (mRNA) of GAL83 in the leaves attacked by insects. With the help of transgenic tobacco plants with constantly downregulated GAL83, they measured the same effect as in the nontransgenic, larvae-infested plants: the increased transport of carbon into the roots, and the utilization of this carbon for seed production at the end of development.

Original work:

SNF-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Jens Schwachtje, Peter E. H. Minchin, Sigfried Jahnke, Joost T. van Dongen, Ursula Schittko, Ian T. Baldwin PNAS (Early Edition) 2006; Vol. 103 (34), 12935-12940

Dr. Andreas Trepte | Max Planck Society
Further information:
http://www.ice.mpg.de

Further reports about: GAL83 Kinase Manduca Max Planck Institute herbivore sexta

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>