Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


After Insects Attack, Plants Bunker Sugars for later Regrowth

One gene activates a rapid SOS (save our sugars) response in young green leaves after attack by insect larvae

Using radioactive carbon and genetically modified native tobacco plants (Nicotiana attenuata), scientists at Max Planck Institutes in Jena and Golm (Potsdam) and at the Research Centre in Jülich have discovered the first gene mediating tolerance to herbivore attack: GAL83, the beta-subunit of Nicotiana attenuata’s SNF-1 related kinase. This gene mediates a rapid herbivore-elicited carbon-hoarding behaviour in which recently assimilated carbon (measured with 11CO2) is squirrelled away to the roots rather than transported to young expanding leaves, to be used later to extend the period of seed and flower production when the plant is done growing. As soon as the plants are attacked by the larvae of the nicotine-resistant tobacco hornworm, Manduca sexta, elicitors from this herbivore’s mouth (called FACs - fatty acid conjugates), which also tune the plant’s induced defence responses, are shown in this study to activate carbon storage in the roots. By reconfiguring where it stores carbon, the plant gains a measure of tolerance and thereby the ability to withstand voracious herbivores.

Using radioactive short-lived carbon isotopes (11C, with a half-life of 20.4 minutes), scientists have measured transport processes of sugars after plant-insect interaction in wild type and transgenic plants. Image: Dirk Schwachtje

Manduca sexta larvae (tobacco hornworm) feeding on the wild annual tobacco Nicotiana attenuata in the Great Basin Desert, Utah, USA. These voracious larvae often completely defoliate plants, largely due to their ability to cope with the plant’s induced defences. To reduce fitness loss from attacks by this adapted herbivore, the plant recognizes the attack and activates a kinase complex which directs photoassimilates (sugars) to the roots for storage and later mobilization to support seed production when the larvae has pupated and is no longer a threat for the plant. Image: Danny Keßler, MPI Chemical Ecology

Ecological studies conducted in the department of Prof. Ian T. Baldwin at the Max Planck Institute for Chemical Ecology in Jena, Germany, focus on the defense of plants against attack from herbivores. Plants respond to attack by producing an arsenal of direct (toxins, digestibility reducers, etc.) and indirect defences that reduce the attackers' performance, thereby lessening the amount of damage inflicted to the plant. However, the co-evolutionary dynamics of the interaction often leads to herbivores that are adapted to the plant’s defences. Resolution of this evolutionary impasse may require the kind of solution advocated by Mahatma Gandhi: tolerate the damage. Or, with regard to plants: make the necessary physiological adjustments to minimize the fitness consequences of lost tissues. Tolerance may be the best strategy for a plant caught in cycles of defensive escalation with its herbivores to extricate itself.

Wild tobacco, which is native to North America, has developed sophisticated methods to fend off Manduca sexta larvae. For example, jasmonic acid produced after insect attack elicits the emission of volatiles that attract Manduca sexta predators. These insect predators kill caterpillars (Kessler and Baldwin, 2001). Yet even such a complex defense system does not guarantee the plants’ survival. Therefore the plants have developed ways of tolerating defoliation by these insect pests: by bunkering resources in below-ground protected sites when they are attacked - just as humans do in crisis situations. In previous studies, Prof. Baldwin and his colleagues have shown that wild tobacco minimizes the production and transport of the toxin, nicotine, in the leaves when attacked by Manduca sexta, because the value of this defense is reduced against nicotine-adapted attackers. Nitrogen, which is part of nicotine, may be used more effectively in other ways. This seems to apply to carbon, too, which is assimilated from carbon dioxide during photosynthesis. As important energy source, carbon is commonly stored as sugar or starch. The scientists found that molecules in the oral secretions of Manduca sexta larvae activate the downregulation of the expression of a protein kinase activator (GAL83) in the plant tissue via a signalling cascade that remains unknown. GAL83 is not unknown in the animal kingdom and in microorganisms: it is the beta-subunit of a protein complex (SNF1 related kinases), which regulates the use of glucose or galactose in mammals and yeast - especially during times of energy deficiency. SNF1 kinases function as posttranslational modificators and can up- or downregulate the activity of metabolic enzymes by means of phosphorylation.

Prof. Baldwin and his coworkers identified GAL83 when they were examining changes in gene expression in young, photosynthetically active leaves that had been attacked by insect larvae. Using the differential RNA display method, they found remarkably few transcripts (mRNA) of GAL83 in the leaves attacked by insects. With the help of transgenic tobacco plants with constantly downregulated GAL83, they measured the same effect as in the nontransgenic, larvae-infested plants: the increased transport of carbon into the roots, and the utilization of this carbon for seed production at the end of development.

Original work:

SNF-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Jens Schwachtje, Peter E. H. Minchin, Sigfried Jahnke, Joost T. van Dongen, Ursula Schittko, Ian T. Baldwin PNAS (Early Edition) 2006; Vol. 103 (34), 12935-12940

Dr. Andreas Trepte | Max Planck Society
Further information:

Further reports about: GAL83 Kinase Manduca Max Planck Institute herbivore sexta

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>