Cracking the real Da Vinci Code – what happens in the artist’s brain?

Creating a brand new academic discipline – neuroarthistory – Prof John Onians uses the results from new scanning techniques to answer questions such as:

– What happens in the brain of the modern artist as he or she works?
– What happened in the brain of an artistic genius like Leonardo Da Vinci?
– How do the brains of amateur and professional artists differ?
– Why do artists in certain times or places have certain visual tastes?
The new research will be presented at the BA Festival of Science in Norwich on Wednesday September 6.

Prof Onians, of UEA’s School of World Art Studies, said: “Until now we had no way of knowing what went on inside the artist’s brain – although Leonardo tried, using anatomy and observation. But now we are finally unlocking the door to this secret world.

“We can also use neuroarthistory much more widely, both to better understand the nature of familiar artistic phenomena such as style, and to crack so far intractable problems such as ‘what is the origin of art?’”

There are many areas in which neuroarthistory puts the study of art on a more informed foundation. None is more striking than the first appearance of art in the Cave of Chauvet 32,000 years ago. No approach other than neuroarthistory can explain why this, the first art, is also the most naturalistic, capturing the mental and physical resources of bears and lions as if on a wildlife film.

Neuroarthistory can also explain why Florentine painters made more use of line and Venetian painters more of colour. The reason is that ‘neural plasticity’ ensured that passive exposure to different natural and manmade environments caused the formation of different visual preferences.

Similarly, the new discipline reveals that European artists such as Leonardo stood before vertical canvases while Chinese artists sat before flat sheets of silk or paper because ‘mirror neurons’ collectively affect artists’ deportments.

“The most interesting aspect of neuroarthistory is the way it enables us to get inside the minds of people who either could not or did not write about their work,” said Prof Onions. “We can understand much about the visual and motor preferences of people separated from us by thousands of miles or thousands of years.”

Working alongside Prof Semir Zeki FRS of University College London, one of the leading neuroscientists in the field of the visual brain and the founder of neuroesthetics, Prof Onians will now apply his findings to a series of case studies, from prehistory to the present, in a book entitled Neuroarthistory. If the approach is successful this will be the foundation stone of a new discipline.

Cracking the real Da Vinci Code: what happens in the artist’s brain? will be held in Norwich City Hall council chamber on Wednesday September 6 from 6-8pm.

Media Contact

Press Office alfa

More Information:

http://www.uea.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors