Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU biologists identify gene that coordinates two cellular processes

06.09.2006
A team of biologists at New York University's Center for Comparative Functional Genomics has uncovered a dual role for the gene mel-28. The gene plays a part in ensuring that chromosomes are divided properly during cell division and it is required for nuclear envelope function. The findings appear in the journal Current Biology.

The team is using functional genomic tools to study the nematode worm Caenorhabditis elegans (C. elegans), the first animal species whose genome was completely sequenced and a model organism to study how embryos develop. The study appearing in Current Biology was performed by NYU's Fabio Piano, an assistant professor, and Anita Fernandez, a post-doctoral researcher, at the Center for Comparative Functional Genomics.

Biologists can draw connections between genes based on systematically accumulated experimental evidence. Network diagrams that illustrate such connections show that most genes fall into highly interconnected groups called modules. These modules are often enriched for genes that share the same role. In order to determine the functions of genes whose role is unknown, researchers examine genes in the same module whose function has already been discovered. This approach has proven useful for learning about the roles of unknown genes.

Unlike most genes in the network, mel-28 had connections to two distinct modules. Piano and Fernandez tested the idea that mel-28 plays important roles in both chromosome segregation and nuclear envelope function. Part of this undertaking included examining the protein MEL-28, which the gene mel-28 encodes.

... more about:
»Nuclear »mel-28

By fusing mel-28 to a gene-encoding GFP, a fluorescent marker, and expressing this fusion in early embryos, they visualized the movement of MEL-28 during cell division in living embryos. Consistent with the idea that MEL-28 had function in chromosome segregation and the nuclear envelope, the MEL-28-GFP fusion was observed to shuttle between the nuclear periphery and the chromosomes during cell division. Additional functional tests showed that mel-28 was essential to both the integrity of the nuclear envelope and to proper chromosome segregation. This study served as a validation of network modeling as a means to identify genes that coordinate multiple functions.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Nuclear mel-28

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>