Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU biologists identify gene that coordinates two cellular processes

06.09.2006
A team of biologists at New York University's Center for Comparative Functional Genomics has uncovered a dual role for the gene mel-28. The gene plays a part in ensuring that chromosomes are divided properly during cell division and it is required for nuclear envelope function. The findings appear in the journal Current Biology.

The team is using functional genomic tools to study the nematode worm Caenorhabditis elegans (C. elegans), the first animal species whose genome was completely sequenced and a model organism to study how embryos develop. The study appearing in Current Biology was performed by NYU's Fabio Piano, an assistant professor, and Anita Fernandez, a post-doctoral researcher, at the Center for Comparative Functional Genomics.

Biologists can draw connections between genes based on systematically accumulated experimental evidence. Network diagrams that illustrate such connections show that most genes fall into highly interconnected groups called modules. These modules are often enriched for genes that share the same role. In order to determine the functions of genes whose role is unknown, researchers examine genes in the same module whose function has already been discovered. This approach has proven useful for learning about the roles of unknown genes.

Unlike most genes in the network, mel-28 had connections to two distinct modules. Piano and Fernandez tested the idea that mel-28 plays important roles in both chromosome segregation and nuclear envelope function. Part of this undertaking included examining the protein MEL-28, which the gene mel-28 encodes.

... more about:
»Nuclear »mel-28

By fusing mel-28 to a gene-encoding GFP, a fluorescent marker, and expressing this fusion in early embryos, they visualized the movement of MEL-28 during cell division in living embryos. Consistent with the idea that MEL-28 had function in chromosome segregation and the nuclear envelope, the MEL-28-GFP fusion was observed to shuttle between the nuclear periphery and the chromosomes during cell division. Additional functional tests showed that mel-28 was essential to both the integrity of the nuclear envelope and to proper chromosome segregation. This study served as a validation of network modeling as a means to identify genes that coordinate multiple functions.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Nuclear mel-28

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>