Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Licensing arrangement reached for antiepileptic drug developed at Hebrew University

06.09.2006
A worldwide licensing arrangement for development, production and marketing of an antiepileptic drug created at the Hebrew University of Jerusalem has been signed by Shire Pharmaceuticals with Yissum, the Hebrew University’s technology transfer company. Shire is a multinational firm with operations in North America, Europe and the Far East.

The licensing is primarly for valrocemide. The efficacy of valrocemide as an antiepileptic drug has been demonstrated in a small clinical study. Shire intends to study the drug as a candidate for application in a number of central nervous system conditions.

Valrocemide was discovered by a team led by Meir Bialer, the David H. Eisenberg Professor of Pharmacy at the Hebrew University School of Pharmacy. Bialer, a leader in the discovery of antiepileptic agents, has authored over 180 publications in the area of pharmacokinetics, antiepileptics and central nervous system (CNS) drugs.

Epilepsy is a widespread neurological disease. Approximately one percent of the world’s population suffers from it, and annual sales of antiepileptic drugs in the U.S. amount to more than $3 billion per year.

There are several existing drugs on the market for patients with epilepsy. However, about one-third of the patients do not react positively to these treatments, and as a result they continue to suffer periodic epileptic seizures. There is a need, therefore, to develop new anti-epileptic drugs that will provide relief to patients who are not seizure-free or who suffer serious side effects from existing drugs.

The brain contains amino acids that serve as neurotransmitters, either excitatory or inhibitory neural transmissions within the central nervous system. Epilepsy is caused, among other reasons, by disturbances in the balance between these two functions: a rise in the level of the excitatory amino acids or a reduction in the level of the inhibitory acids.

Glycine is one of the inhibitory amino acids, and increasing its concentration in the brain has an antiepileptic effect. However, it is impossible to administer it to patients in its natural state, because it does not penetrate the blood-brain barrier that prevents medications from reaching their CNS target sites.

Prof. Bialer’s research team, which included his former doctoral student, Dr. Salim Hadad, worked to develop a glycine derivative which would penetrate the blood-brain barrier and would subsequently be cleared out of the body by a predesigned elimination pathway in order to avoid undesirable side effects which may be caused by toxic metabolic substances (metabolites).

The new CNS drug, valrocemide, is a combination of a known antiepileptic drug, valproic acid, and a glycine derivative, glycinamide. Valrocemide has been shown to be one of the most effective drugs among a large, analogous series of molecules which have been developed in Prof. Bialer’s laboratory.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

Further reports about: Hebrew University acid antiepileptic patients

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>