Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Licensing arrangement reached for antiepileptic drug developed at Hebrew University

06.09.2006
A worldwide licensing arrangement for development, production and marketing of an antiepileptic drug created at the Hebrew University of Jerusalem has been signed by Shire Pharmaceuticals with Yissum, the Hebrew University’s technology transfer company. Shire is a multinational firm with operations in North America, Europe and the Far East.

The licensing is primarly for valrocemide. The efficacy of valrocemide as an antiepileptic drug has been demonstrated in a small clinical study. Shire intends to study the drug as a candidate for application in a number of central nervous system conditions.

Valrocemide was discovered by a team led by Meir Bialer, the David H. Eisenberg Professor of Pharmacy at the Hebrew University School of Pharmacy. Bialer, a leader in the discovery of antiepileptic agents, has authored over 180 publications in the area of pharmacokinetics, antiepileptics and central nervous system (CNS) drugs.

Epilepsy is a widespread neurological disease. Approximately one percent of the world’s population suffers from it, and annual sales of antiepileptic drugs in the U.S. amount to more than $3 billion per year.

There are several existing drugs on the market for patients with epilepsy. However, about one-third of the patients do not react positively to these treatments, and as a result they continue to suffer periodic epileptic seizures. There is a need, therefore, to develop new anti-epileptic drugs that will provide relief to patients who are not seizure-free or who suffer serious side effects from existing drugs.

The brain contains amino acids that serve as neurotransmitters, either excitatory or inhibitory neural transmissions within the central nervous system. Epilepsy is caused, among other reasons, by disturbances in the balance between these two functions: a rise in the level of the excitatory amino acids or a reduction in the level of the inhibitory acids.

Glycine is one of the inhibitory amino acids, and increasing its concentration in the brain has an antiepileptic effect. However, it is impossible to administer it to patients in its natural state, because it does not penetrate the blood-brain barrier that prevents medications from reaching their CNS target sites.

Prof. Bialer’s research team, which included his former doctoral student, Dr. Salim Hadad, worked to develop a glycine derivative which would penetrate the blood-brain barrier and would subsequently be cleared out of the body by a predesigned elimination pathway in order to avoid undesirable side effects which may be caused by toxic metabolic substances (metabolites).

The new CNS drug, valrocemide, is a combination of a known antiepileptic drug, valproic acid, and a glycine derivative, glycinamide. Valrocemide has been shown to be one of the most effective drugs among a large, analogous series of molecules which have been developed in Prof. Bialer’s laboratory.

Jerry Barach | alfa
Further information:
http://www.huji.ac.il

Further reports about: Hebrew University acid antiepileptic patients

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>