Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard scientists identify compounds that stimulate stem cell growth in the brain

05.09.2006
Scientists at Harvard University have identified key compounds that stimulate stem cell growth in the brain, which may one day lead to restored function for people affected by Parkinson's disease, strokes, multiple sclerosis, and a wide range of neurological disorders. These findings, which appear in the September 2006 issue of The FASEB Journal, provide important clues as to which compounds may be responsible for causing key brain cells, neurons, to regenerate and ultimately restore brain function.

The research study focused on two compounds--LTB4 and LXA4. Both play a role in inflammation and are regulators of proliferation of several cell types. When stem cells isolated from the brains of mouse embryos were exposed to LTB4 they proliferated and differentiated, giving rise to additional stem cells and to differentiated neurons with limited or absent capacity to divide. When exposed to LXA4, these cells experienced decreased growth and apoptosis.

"This study opens doors to new therapeutic approaches for a wide range neurological disorders and injuries that were once considered incurable," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal.

The study also provided so insight into the cellular and molecular mechanisms involved when LTB4 stimulates neuronal stem cells. According to the study, cells generated as the result of LTB4 exposure had high levels of LTB4 receptors, whereas the level of LTB4 receptors was considerably lower in similar cells not generated by LTB4 stimulation.

... more about:
»LTB4 »Stem »receptor

The investigators were further able to show that LTB4 up-regulated several molecules involved in cell cycling and growth, such as cyclins and epidermal growth factor receptor, and decreased those such as caspase 8 which play a role in apoptosis. LXA4 had the opposite effects.

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

Further reports about: LTB4 Stem receptor

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>