Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard scientists identify compounds that stimulate stem cell growth in the brain

05.09.2006
Scientists at Harvard University have identified key compounds that stimulate stem cell growth in the brain, which may one day lead to restored function for people affected by Parkinson's disease, strokes, multiple sclerosis, and a wide range of neurological disorders. These findings, which appear in the September 2006 issue of The FASEB Journal, provide important clues as to which compounds may be responsible for causing key brain cells, neurons, to regenerate and ultimately restore brain function.

The research study focused on two compounds--LTB4 and LXA4. Both play a role in inflammation and are regulators of proliferation of several cell types. When stem cells isolated from the brains of mouse embryos were exposed to LTB4 they proliferated and differentiated, giving rise to additional stem cells and to differentiated neurons with limited or absent capacity to divide. When exposed to LXA4, these cells experienced decreased growth and apoptosis.

"This study opens doors to new therapeutic approaches for a wide range neurological disorders and injuries that were once considered incurable," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal.

The study also provided so insight into the cellular and molecular mechanisms involved when LTB4 stimulates neuronal stem cells. According to the study, cells generated as the result of LTB4 exposure had high levels of LTB4 receptors, whereas the level of LTB4 receptors was considerably lower in similar cells not generated by LTB4 stimulation.

... more about:
»LTB4 »Stem »receptor

The investigators were further able to show that LTB4 up-regulated several molecules involved in cell cycling and growth, such as cyclins and epidermal growth factor receptor, and decreased those such as caspase 8 which play a role in apoptosis. LXA4 had the opposite effects.

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

Further reports about: LTB4 Stem receptor

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>