Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harvard scientists identify compounds that stimulate stem cell growth in the brain

05.09.2006
Scientists at Harvard University have identified key compounds that stimulate stem cell growth in the brain, which may one day lead to restored function for people affected by Parkinson's disease, strokes, multiple sclerosis, and a wide range of neurological disorders. These findings, which appear in the September 2006 issue of The FASEB Journal, provide important clues as to which compounds may be responsible for causing key brain cells, neurons, to regenerate and ultimately restore brain function.

The research study focused on two compounds--LTB4 and LXA4. Both play a role in inflammation and are regulators of proliferation of several cell types. When stem cells isolated from the brains of mouse embryos were exposed to LTB4 they proliferated and differentiated, giving rise to additional stem cells and to differentiated neurons with limited or absent capacity to divide. When exposed to LXA4, these cells experienced decreased growth and apoptosis.

"This study opens doors to new therapeutic approaches for a wide range neurological disorders and injuries that were once considered incurable," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal.

The study also provided so insight into the cellular and molecular mechanisms involved when LTB4 stimulates neuronal stem cells. According to the study, cells generated as the result of LTB4 exposure had high levels of LTB4 receptors, whereas the level of LTB4 receptors was considerably lower in similar cells not generated by LTB4 stimulation.

... more about:
»LTB4 »Stem »receptor

The investigators were further able to show that LTB4 up-regulated several molecules involved in cell cycling and growth, such as cyclins and epidermal growth factor receptor, and decreased those such as caspase 8 which play a role in apoptosis. LXA4 had the opposite effects.

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

Further reports about: LTB4 Stem receptor

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>