Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost in the labyrinth

04.09.2006
Decoding the instructions that tell cells how to become blood

Blood cells have limited lifespans, which means that they must be continually replaced by calling up reserves, and turning these into the blood cell types needed by the body. Claus Nerlov and his colleagues at the European Molecular Biology Laboratory (EMBL) unit in Monterotondo, Italy, in collaboration with researchers from Sten Eirik Jacobsen’s laboratory at the University of Lund in Sweden, have now uncovered how an intracellular communication pathway contributes to this process. Because defects in such pathways and in the development of stem cells frequently lead to leukemia and other diseases, the work should give researchers a new handle on processes within cells that lead to cancer. The work is published in this week’s online issue of Nature Immunology.

Over the past decades, molecular biologists have identified several pathways – sequences of molecules which manage the flow of information within the cell – responsible for major biological processes. One of these, the “Wingless” pathway, plays a vital role in shaping tissues and organs in developing embryos of nearly all animal species. It also helps organisms manage stem cells, by keeping them on hold and preventing their differentiation until the right time. Such pathways are usually switched on and off by external stimuli that help cells respond properly to the environment. Now Peggy Kirstetter and other members of Nerlov’s lab have shown what happens when Wingless is too active in hematopoietic stem cells in mice.

“We modified one element of the pathway, a protein called beta-catenin, so that it was stuck in ‘transmission mode,’” Kirstetter says. “This created cells in which the pathway was always switched on. We’ve known that Wingless contributes to blood differentiation, but didn’t know how the signals were being transmitted within the hematopoietic stem cell.”

... more about:
»Beta-Catenin »Wingless »blood cell »stem cells

The modified protein had dramatic effects. Usually, most cells undergo numerous transitional stages on their way from stem cells to fully-developed types in the blood. Several types of blood cells vanished entirely; the same thing happened to more basic cell types higher up in the blood lineage hierarchy. Particular kinds of stem cells disappeared from the bone marrow of the mice. Others were too frequent. Bone marrow cells didn’t develop into myeloid and red blood cells. B- and T-cells were also blocked at early stages, but in a different way. This hints that they may be controlled by other protein links in the Wingless pathway as well. Perhaps most strikingly, beta-catenin appears to make cells take decisions about their fate before they leave the stem cell compartment in the bone marrow, something so far not thought to occur.

The study proves that beta-catenin plays a central role in determining whether blood cells form or not. On the other hand, an overactive Wingless pathway doesn’t seem to damage cells that already exist. Thus beta-catenin seems to be a decision-maker, a selector of how information gets routed within the cell, rather than something which maintains the vitality of existing cells.

Nerlov compares the breakdown to people standing at a fork in a labyrinth, hesitating before they go on. “We know there are strong connections to cells’ decisions to divide, to develop or to die. If cells don’t commit themselves to the right developmental path at the right time, they’re very likely to die or to begin an inappropriate type of reproduction. Acute leukemias and other forms of cancer cells derive from defects such as this. Understanding the processes by which they form will require pinpointing the forks in the road where things go wrong.”

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.de

Further reports about: Beta-Catenin Wingless blood cell stem cells

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>