Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell's fight against cancer revealed

01.09.2006
X-ray data portray struggle between pro- and anti-tumor proteins

If anything in cancer biology can be likened to a cage match, this is it: the battle inside the cell walls between LTag, "The Most Amazing Molecule in the Universe," and p53, "The Guardian of the Genome."

By the painstaking use of X-ray crystallography to track motion in very large molecules, a University of Southern California-led research group has taken a first look at the life-or-death struggle of a cancer-causing protein – LTag – and a key tumor suppressor – p53.

Each villainous LTag (short for large T antigen) single-handedly ties up a tag-team of six p53 molecules, inhibiting their tumor-suppressant role, the researchers report in the Sept. 1 issue of Genes & Development.

... more about:
»LTag »Pipas »p53

Undeterred, the p53 fight back by preventing replication of the virus that produces LTag, known as an oncoprotein for its function in cancer growth.

The champion depends on which side is stronger and healthier.

"If you have a lot of functional p53, you can override large T antigen," said lead researcher Xiaojiang Chen, professor in molecular and computational biology in the USC College of Letters, Arts and Sciences.

Sometimes called the "Guardian of the Genome," a damaged p53 can leave a cell almost defenseless.

"p53 is a very important tumor suppressor that's mutated in a vast majority of all cancers," said James Pipas, professor of biological sciences at the University of Pittsburgh.

It was Pipas who, after studying LTag for many years and marveling at its varied biological functions – including highly efficient tumor promotion – named it "The Most Amazing Molecule in the Universe" in one of his presentations.

Pipas called Chen's new study "a very important piece of work" that shows how a healthy cell's tumor defenses break down.

"Understanding exactly how this works is going to be a critical step toward our understanding of tumor genesis," he said.

This, in turn, may lead to new techniques for designing tumor-fighting drugs, Pipas added.

Chen's team was able to describe the interplay between LTag and p53 by crystallizing the complex of one LTag and six p53 molecules, totaling more than 50,000 atoms between them.

"It's quite a technical achievement, because these are fairly large proteins," Pipas said.

Chen said his study gave him new respect for LTag and its parent, Simian Virus 40. SV40 has long been used as a research tool to induce cancers in cell cultures.

"Somehow this virus knows how important p53 is, and has this oncoprotein (LTag) to target it by physically interacting with it and changing its conformation," Chen said.

If the virus succeeds, the result is a new tumor.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: LTag Pipas p53

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>