Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science researchers genetically transform immune cells into tumor fighters

01.09.2006
Engineered cells can persist in the body and shrink large tumors in humans

A team of researchers has genetically engineered normal immune cells to become specialized tumor fighters, demonstrating for the first time that these engineered cells can persist in the body and shrink large tumors in humans.

Two of the 17 people with advanced melanoma who received the experimental treatment saw their tumors shrink and were declared clinically free of disease more than a year and half after the therapy began, Steven A. Rosenberg of the National Cancer Institute and his colleagues report in a study published online by the journal Science at the Science Express website on 31 August. Science and Science Express are published by AAAS, the nonprofit science society.

So far, the therapy has only been used in this small group of melanoma patients, but Rosenberg says his team has demonstrated ways to engineer similar immune cells in the laboratory that would attack more common tumors such as breast, lung and liver cancers.

The technique developed by the Science researchers "represents the first time that gene manipulations have been shown to cause tumor regression in humans," Rosenberg says.

"This work marks an important next step in harnessing the power of our immune systems to fight cancer. The publication of this paper should help highlight the significant work to a broad spectrum of people, including patients, clinicians and those involved in basic research," said Stephen Simpson, Science's senior editor, immunology.

Rosenberg and colleagues have a long history of looking for ways to boost the body's natural immune defenses against cancer, focusing specifically on T cells, a special type of immune cell that can recognize and attack "foreign" cells such as those found in tumors. In their earlier experiments, the researchers removed tumor-fighting T cells from melanoma patients and multiplied these cells in the laboratory. After using chemotherapy to clear out a patient's old T cells, the researchers repopulated the patients' immune systems with these new fighters.

But some people with melanoma don't have these tumor-fighting T cells, and in other types of cancer it's difficult to identify T cells that attack tumors, Rosenberg says, so the researchers had to come up with a way to create these types of T cells from scratch.

T cells carry a receptor protein on their surface that recognizes specific molecules called antigens on tumor cells. The receptor's genetic makeup determines the antigen types that the T cell can recognize, so that some cells contain genes that make a T cell receptor that homes in on melanoma cells, while other cells contain genes that make a T cell receptor that recognizes breast or lung cancer cells.

With this in mind, Rosenberg and colleagues created tumor fighters by removing normal T cells from people with advanced metastatic melanoma, genetically engineering these normal cells to carry the receptor that recognizes melanoma cells and returning these "re-armed" cells to rebuild the patients' immune systems.

"We can take normal lymphocytes from patients and convert them to tumor-reactive cells," Rosenberg says, adding that the engineered cells could be tailored to fight tumors other than melanoma. "We've identified T cell receptors that will now recognize common cancers," he notes.

The newly engineered T cells showed signs of persistence in 15 of the patients in the study, making up at least 10 percent of their circulating T cells for at least two months after treatment. New T cell levels were higher in the two people whose tumors shrunk noticeably with the treatment.

Rosenberg and colleagues are now searching for ways to fine-tune the treatment so that greater numbers of the engineered T cells will survive and continue expressing their new receptor genes, since their expression does seem to wane over time, the Science researchers found.

Devising new ways to insert the receptor genes in the T cells, usually encoded in a retrovirus, has been one of the most challenging aspects of the treatment, Rosenberg says. "It's a lot of sophisticated molecular biology and most of our work is going into designing retroviruses, putting genes into cells efficiently and getting them expressed."

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org

Further reports about: T cells Treatment colleagues genetically receptor recognize

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>