Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science researchers genetically transform immune cells into tumor fighters

01.09.2006
Engineered cells can persist in the body and shrink large tumors in humans

A team of researchers has genetically engineered normal immune cells to become specialized tumor fighters, demonstrating for the first time that these engineered cells can persist in the body and shrink large tumors in humans.

Two of the 17 people with advanced melanoma who received the experimental treatment saw their tumors shrink and were declared clinically free of disease more than a year and half after the therapy began, Steven A. Rosenberg of the National Cancer Institute and his colleagues report in a study published online by the journal Science at the Science Express website on 31 August. Science and Science Express are published by AAAS, the nonprofit science society.

So far, the therapy has only been used in this small group of melanoma patients, but Rosenberg says his team has demonstrated ways to engineer similar immune cells in the laboratory that would attack more common tumors such as breast, lung and liver cancers.

The technique developed by the Science researchers "represents the first time that gene manipulations have been shown to cause tumor regression in humans," Rosenberg says.

"This work marks an important next step in harnessing the power of our immune systems to fight cancer. The publication of this paper should help highlight the significant work to a broad spectrum of people, including patients, clinicians and those involved in basic research," said Stephen Simpson, Science's senior editor, immunology.

Rosenberg and colleagues have a long history of looking for ways to boost the body's natural immune defenses against cancer, focusing specifically on T cells, a special type of immune cell that can recognize and attack "foreign" cells such as those found in tumors. In their earlier experiments, the researchers removed tumor-fighting T cells from melanoma patients and multiplied these cells in the laboratory. After using chemotherapy to clear out a patient's old T cells, the researchers repopulated the patients' immune systems with these new fighters.

But some people with melanoma don't have these tumor-fighting T cells, and in other types of cancer it's difficult to identify T cells that attack tumors, Rosenberg says, so the researchers had to come up with a way to create these types of T cells from scratch.

T cells carry a receptor protein on their surface that recognizes specific molecules called antigens on tumor cells. The receptor's genetic makeup determines the antigen types that the T cell can recognize, so that some cells contain genes that make a T cell receptor that homes in on melanoma cells, while other cells contain genes that make a T cell receptor that recognizes breast or lung cancer cells.

With this in mind, Rosenberg and colleagues created tumor fighters by removing normal T cells from people with advanced metastatic melanoma, genetically engineering these normal cells to carry the receptor that recognizes melanoma cells and returning these "re-armed" cells to rebuild the patients' immune systems.

"We can take normal lymphocytes from patients and convert them to tumor-reactive cells," Rosenberg says, adding that the engineered cells could be tailored to fight tumors other than melanoma. "We've identified T cell receptors that will now recognize common cancers," he notes.

The newly engineered T cells showed signs of persistence in 15 of the patients in the study, making up at least 10 percent of their circulating T cells for at least two months after treatment. New T cell levels were higher in the two people whose tumors shrunk noticeably with the treatment.

Rosenberg and colleagues are now searching for ways to fine-tune the treatment so that greater numbers of the engineered T cells will survive and continue expressing their new receptor genes, since their expression does seem to wane over time, the Science researchers found.

Devising new ways to insert the receptor genes in the T cells, usually encoded in a retrovirus, has been one of the most challenging aspects of the treatment, Rosenberg says. "It's a lot of sophisticated molecular biology and most of our work is going into designing retroviruses, putting genes into cells efficiently and getting them expressed."

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org

Further reports about: T cells Treatment colleagues genetically receptor recognize

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>