Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Science researchers genetically transform immune cells into tumor fighters

01.09.2006
Engineered cells can persist in the body and shrink large tumors in humans

A team of researchers has genetically engineered normal immune cells to become specialized tumor fighters, demonstrating for the first time that these engineered cells can persist in the body and shrink large tumors in humans.

Two of the 17 people with advanced melanoma who received the experimental treatment saw their tumors shrink and were declared clinically free of disease more than a year and half after the therapy began, Steven A. Rosenberg of the National Cancer Institute and his colleagues report in a study published online by the journal Science at the Science Express website on 31 August. Science and Science Express are published by AAAS, the nonprofit science society.

So far, the therapy has only been used in this small group of melanoma patients, but Rosenberg says his team has demonstrated ways to engineer similar immune cells in the laboratory that would attack more common tumors such as breast, lung and liver cancers.

The technique developed by the Science researchers "represents the first time that gene manipulations have been shown to cause tumor regression in humans," Rosenberg says.

"This work marks an important next step in harnessing the power of our immune systems to fight cancer. The publication of this paper should help highlight the significant work to a broad spectrum of people, including patients, clinicians and those involved in basic research," said Stephen Simpson, Science's senior editor, immunology.

Rosenberg and colleagues have a long history of looking for ways to boost the body's natural immune defenses against cancer, focusing specifically on T cells, a special type of immune cell that can recognize and attack "foreign" cells such as those found in tumors. In their earlier experiments, the researchers removed tumor-fighting T cells from melanoma patients and multiplied these cells in the laboratory. After using chemotherapy to clear out a patient's old T cells, the researchers repopulated the patients' immune systems with these new fighters.

But some people with melanoma don't have these tumor-fighting T cells, and in other types of cancer it's difficult to identify T cells that attack tumors, Rosenberg says, so the researchers had to come up with a way to create these types of T cells from scratch.

T cells carry a receptor protein on their surface that recognizes specific molecules called antigens on tumor cells. The receptor's genetic makeup determines the antigen types that the T cell can recognize, so that some cells contain genes that make a T cell receptor that homes in on melanoma cells, while other cells contain genes that make a T cell receptor that recognizes breast or lung cancer cells.

With this in mind, Rosenberg and colleagues created tumor fighters by removing normal T cells from people with advanced metastatic melanoma, genetically engineering these normal cells to carry the receptor that recognizes melanoma cells and returning these "re-armed" cells to rebuild the patients' immune systems.

"We can take normal lymphocytes from patients and convert them to tumor-reactive cells," Rosenberg says, adding that the engineered cells could be tailored to fight tumors other than melanoma. "We've identified T cell receptors that will now recognize common cancers," he notes.

The newly engineered T cells showed signs of persistence in 15 of the patients in the study, making up at least 10 percent of their circulating T cells for at least two months after treatment. New T cell levels were higher in the two people whose tumors shrunk noticeably with the treatment.

Rosenberg and colleagues are now searching for ways to fine-tune the treatment so that greater numbers of the engineered T cells will survive and continue expressing their new receptor genes, since their expression does seem to wane over time, the Science researchers found.

Devising new ways to insert the receptor genes in the T cells, usually encoded in a retrovirus, has been one of the most challenging aspects of the treatment, Rosenberg says. "It's a lot of sophisticated molecular biology and most of our work is going into designing retroviruses, putting genes into cells efficiently and getting them expressed."

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org

Further reports about: T cells Treatment colleagues genetically receptor recognize

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>