Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better water test

01.09.2006
Water is essential for life. Nevertheless, even small amounts of water in the wrong places – such as fuels, lubricants, or organic solvents – can cause motors to sputter, metal parts to rust, or chemical reactions to go awry.

That's why one of the most common lab tests performed in industry is one that looks for traces of water in other substances, even though the test itself is complicated and time-consuming.

A new method for detection and measurement of small amounts of water, developed in the lab of Dr. Milko van der Boom in the Weizmann Institute's Organic Chemistry Department, might allow such tests to be performed accurately and quickly. Van der Boom and postdoctoral fellow Dr. Tarkeshwar Gupta created a versatile film on glass that is only 1.7 nanometers thick. The film can measure the number of water molecules in a substance even when it contains only a few parts per million.

"The problem," says van der Boom, "is that water is hard to detect and to quantify." His method is a departure from previous sensing techniques. In general, such sensor systems are based on relatively weak but selective "host-guest" interactions. In the Weizmann Institute team's sensor, metal complexes embedded in the film steal electrons from the water molecules.

... more about:
»Boom »Electron »Substance

When the number of electrons in the metal complexes changes, so does their color, and this change can be read optically. Devices based on optical readout do not need to be wired directly to larger-scale electronics – an issue that's still a tremendous challenge for much of molecular-based electronics.

The test can be done in as little as five minutes, and the molecular film can be returned to its original state by washing it with a simple chemical. The film also remains stable, even at high temperatures and with repeated use. In addition, it can be deposited in an inexpensive, one-molecule-thick layer on glass, silicon, optical fiber, or plastic.

The ease and low cost of fabrication may also make such films ideal for one-time use. Testing for water in fuel or solvents might become as simple as checking chlorine levels in a swimming pool. Optical detection and quantification by electron transfer could potentially work for numerous substances other than water. The scientists are now exploring the possibility of adapting the method to testing for trace amounts of materials or substances such as specific metal ions or gasses.

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

Further reports about: Boom Electron Substance

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>