Silence of the amoebae

Freedom of expression is great, but silence is golden – at least when it comes to amoebae, which are intestine-dwelling parasites that cause life-threatening dysentery in many parts of the world. Three years ago, scientists at the Weizmann Institute accidentally discovered a way to silence the expression of a key amoebic gene, one which codes for a toxic protein that kills human intestinal cells infected with this devastating illness. Now the scientists have developed a way to successfully silence the expression of two additional virulence genes in the same amoebae.

Rivka Bracha and colleagues in the lab of Prof. David Mirelman in the Biological Chemistry Department had shown that expression of the gene coding for the toxic protein could be prevented by inserting a plasmid (a small loop of DNA) containing a copy of a specific part of that gene into the amoeba cell nucleus. Introducing the plasmid led to the modification of DNA “packing” proteins, causing the DNA-protein packages to become more tightly coiled – something like a tangled telephone cord – and causing an irreversible silencing of gene expression. In a recent paper published in PLoS Pathogens, the Weizmann scientists report the silencing of two additional virulence genes in the same amoebae using a similar plasmid-induced principle.

The disabled amoebae, though rendered harmless, still display the same repertoire of surface antigens (markers recognized by the immune system) as the disease-causing strain. The scientists now plan to test the ability of these silenced amoebae to serve as a live vaccine by evoking an intestinal immune response. If successful, it may put an end to amoebic diseases that claim the lives of thousands yearly and afflict millions more.

Media Contact

Jennifer Manning EurekAlert!

More Information:

http://www.acwis.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors