Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silence of the amoebae

01.09.2006
Weizmann Institute scientists render a disease-causing pathogen harmless

Freedom of expression is great, but silence is golden – at least when it comes to amoebae, which are intestine-dwelling parasites that cause life-threatening dysentery in many parts of the world. Three years ago, scientists at the Weizmann Institute accidentally discovered a way to silence the expression of a key amoebic gene, one which codes for a toxic protein that kills human intestinal cells infected with this devastating illness. Now the scientists have developed a way to successfully silence the expression of two additional virulence genes in the same amoebae.

Rivka Bracha and colleagues in the lab of Prof. David Mirelman in the Biological Chemistry Department had shown that expression of the gene coding for the toxic protein could be prevented by inserting a plasmid (a small loop of DNA) containing a copy of a specific part of that gene into the amoeba cell nucleus. Introducing the plasmid led to the modification of DNA "packing" proteins, causing the DNA-protein packages to become more tightly coiled – something like a tangled telephone cord – and causing an irreversible silencing of gene expression. In a recent paper published in PLoS Pathogens, the Weizmann scientists report the silencing of two additional virulence genes in the same amoebae using a similar plasmid-induced principle.

The disabled amoebae, though rendered harmless, still display the same repertoire of surface antigens (markers recognized by the immune system) as the disease-causing strain. The scientists now plan to test the ability of these silenced amoebae to serve as a live vaccine by evoking an intestinal immune response. If successful, it may put an end to amoebic diseases that claim the lives of thousands yearly and afflict millions more.

Jennifer Manning | EurekAlert!
Further information:
http://www.acwis.org

Further reports about: scientists

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>