Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motor helps cells tell which way is up

31.08.2006
Researchers at the University of Illinois at Chicago show how a newly discovered molecular motor helps a cell determine which way is up.

The study was published in the July 31 issue of the Journal of Cell Biology.

The sense of top and bottom is often lost in cells that become cancerous and may be an important factor in metastasis.

Cells depend on the location of a number of proteins and lipids to recognize and maintain their polarity. Moving these lipids and proteins from where they are produced to where they are needed is a dynamic process.

... more about:
»Chishti »PIP3 »kinesin »polarity

Dr. Athar Chishti, professor of pharmacology at the UIC College of Medicine and principal investigator of the study, said researchers knew that a lipid called PIP3 is very important in signalling polarity. But the process everyone wanted to understand, he said, "was the trafficking and disposition of this lipid to where it was needed at the growing tips of the cells."

Chishti's research team, including Kaori Horiguchi and Dr. Toshihiko Hanada, determined that one domain of a molecular motor protein called a kinesin that they had discovered interacted with PIP3 binding protein. They showed that the kinesin and this binding protein motored the PIP3 along microtubules -- the tracks upon which the kinesins move their cargoes.

They also showed that the kinesin-binding adaptor and PIP3 were found together at the tips of the nerve cells and that in one of these cell types these molecules were most abundant in the longest extension, called the axon.

"We found the motor, the binding domains and an adaptor," said Chishti. "When the adaptor binds PIP3, it is delivered to the membrane where it is needed, and if you block this process, polarity is lost."

In some cells, like neurons, there are dramatic differences in the structure and function of the different ends of a cell. But even in cells where the difference between the ends is not as obvious, the delivery process is essential. Loss of cell polarity is often the first step in converting a normal cell to a cancer cell, Chishti said.

The discovery illuminates a key step in the trafficking and disposition of polarity determinants. Science magazine highlighted the Chishti paper as an Editor's Choice in the August 18th issue and in this week's Signal Transduction Segment online at http://stke.sciencemag.org/.

"Now we know the cargo, and we know the motor," said Chishti. "The next step will be to find out what turns the motor on and tells it to start down the track to deliver the cargo.

"In the kinesin field, there are two fundamental questions: what are the cargoes, and what turns the motors on and off that carry them."

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu
http://stke.sciencemag.org/

Further reports about: Chishti PIP3 kinesin polarity

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>