Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers add crucial information on how the body's T cells react to parasitic diseases

30.08.2006
In the 1980s, the phrase “T cell count” burst into the world’s medical vocabulary as thousands and then millions of patients died of AIDS. The public began to understand the crucial importance of T cells—cellular Pac-Men that roam the bloodstream gobbling up infection and guarding against future attacks.

While scientists understood how T cells worked in certain kinds of diseases, one area has remained murky: disorders caused by protozoan parasites. Now, because of a study just published and led by scientists at the University of Georgia, researchers are closer than ever to understanding how T cells respond to parasitic diseases that kill millions each year.

“We have needed to really know what happens in these infections,” said Rick Tarleton, research professor of cellular biology and a faculty member in UGA’s Center for Tropical and Emerging Global Diseases (CTEGD). “What is the body’s response? This study is the first to show that one parasite, Trypanosoma cruzi, which causes Chagas Disease, elicits a T cell response focused on a few peptides, despite having some 12,000 genes capable of generating hundreds of thousands of potential targets for T cells.”

The study was just published in the online journal PLOS Pathogens, a peer-reviewed, open-access journal published by the Public Library of Science. Other authors of the paper include: Diana Martin, the lead author and postdoctoral fellow at UGA; former UGA undergraduates Melissa Cabinian and Matthew Crim; computational biologist Brent Weatherly of the CTEGD; former UGA postdoctoral fellow Susan Sullivan; doctoral students Matt Collins, Charles Rosenberg and Sarah Craven; Alessandro Sette of the La Jolla Institute for Allergy and Immunology in San Diego, Ca.; and Susana Laucella and Miriam Postan of the Nacional de Laboratorios e Institutos de Salud in Buenos Aires, Argentina.

... more about:
»T cells »Tarleton »crucial »parasitic

Chagas Disease is a tropical parasitic disease that sickens as many as 18 million people a year, mostly in the Americas, and kills 50,000 of those. The parasite that carries it, T. cruzi, is transmitted to mammals and humans through the bite of several genera of flying, biting insects. What intrigued Tarleton was that T cell response to infection from T. cruzi, while important to the body’s ability to fight disease, has remained somewhat cryptic because of the daunting complexity of the processes.

There are actually several kinds of T cells, and the ones Tarleton and his colleagues studied are the cytotoxic T cell, which scientists call CD8+. What they discovered is that the T cell response in T. cruzi is highly focused on a relatively small set of cellular features called “epitopes,” which are part of a macromolecule that is recognized by the immune system. The specific epitopes involved are ones encoded by the trans-sialidase (or “ts”) family of genes.

“The function of the ts genes is crucial for the parasite,” said Tarleton, “because the parasite must have sialic acids to invade cells and infect the host. But since it doesn’t have it, it must steal it from the host cells.” The problem is that T. cruzi potentially expresses more than a thousand ts genes, and this pool varies from parasite to parasite—making this set of proteins a poor choice for vaccine development, Tarleton said.

The importance of the new research, however, isn’t in specifically what happens in T. cruzi and Chagas Disease. Rather, it is a new understanding of how T cells react to infection in all parasitic diseases, including malaria, which may cause as many as 500 million infections and three million deaths annually in humans. The entire area has been little understood because of the almost impenetrable complexity of the problem.

In organisms like viruses and bacteria, which have relatively small genomes, analysis can be more direct; however, understanding the targets of the T cell response in complex pathogens such as T. cruzi requires much more. Scientists must integrate information generated from the recent analysis of the T. cruzi genome and proteome, with bioinformatics and cutting-edge techniques like advanced flow cytometry to unravel what is happening.

Grant support for the research came from the National Institutes of Health.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: T cells Tarleton crucial parasitic

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>