Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers add crucial information on how the body's T cells react to parasitic diseases

30.08.2006
In the 1980s, the phrase “T cell count” burst into the world’s medical vocabulary as thousands and then millions of patients died of AIDS. The public began to understand the crucial importance of T cells—cellular Pac-Men that roam the bloodstream gobbling up infection and guarding against future attacks.

While scientists understood how T cells worked in certain kinds of diseases, one area has remained murky: disorders caused by protozoan parasites. Now, because of a study just published and led by scientists at the University of Georgia, researchers are closer than ever to understanding how T cells respond to parasitic diseases that kill millions each year.

“We have needed to really know what happens in these infections,” said Rick Tarleton, research professor of cellular biology and a faculty member in UGA’s Center for Tropical and Emerging Global Diseases (CTEGD). “What is the body’s response? This study is the first to show that one parasite, Trypanosoma cruzi, which causes Chagas Disease, elicits a T cell response focused on a few peptides, despite having some 12,000 genes capable of generating hundreds of thousands of potential targets for T cells.”

The study was just published in the online journal PLOS Pathogens, a peer-reviewed, open-access journal published by the Public Library of Science. Other authors of the paper include: Diana Martin, the lead author and postdoctoral fellow at UGA; former UGA undergraduates Melissa Cabinian and Matthew Crim; computational biologist Brent Weatherly of the CTEGD; former UGA postdoctoral fellow Susan Sullivan; doctoral students Matt Collins, Charles Rosenberg and Sarah Craven; Alessandro Sette of the La Jolla Institute for Allergy and Immunology in San Diego, Ca.; and Susana Laucella and Miriam Postan of the Nacional de Laboratorios e Institutos de Salud in Buenos Aires, Argentina.

... more about:
»T cells »Tarleton »crucial »parasitic

Chagas Disease is a tropical parasitic disease that sickens as many as 18 million people a year, mostly in the Americas, and kills 50,000 of those. The parasite that carries it, T. cruzi, is transmitted to mammals and humans through the bite of several genera of flying, biting insects. What intrigued Tarleton was that T cell response to infection from T. cruzi, while important to the body’s ability to fight disease, has remained somewhat cryptic because of the daunting complexity of the processes.

There are actually several kinds of T cells, and the ones Tarleton and his colleagues studied are the cytotoxic T cell, which scientists call CD8+. What they discovered is that the T cell response in T. cruzi is highly focused on a relatively small set of cellular features called “epitopes,” which are part of a macromolecule that is recognized by the immune system. The specific epitopes involved are ones encoded by the trans-sialidase (or “ts”) family of genes.

“The function of the ts genes is crucial for the parasite,” said Tarleton, “because the parasite must have sialic acids to invade cells and infect the host. But since it doesn’t have it, it must steal it from the host cells.” The problem is that T. cruzi potentially expresses more than a thousand ts genes, and this pool varies from parasite to parasite—making this set of proteins a poor choice for vaccine development, Tarleton said.

The importance of the new research, however, isn’t in specifically what happens in T. cruzi and Chagas Disease. Rather, it is a new understanding of how T cells react to infection in all parasitic diseases, including malaria, which may cause as many as 500 million infections and three million deaths annually in humans. The entire area has been little understood because of the almost impenetrable complexity of the problem.

In organisms like viruses and bacteria, which have relatively small genomes, analysis can be more direct; however, understanding the targets of the T cell response in complex pathogens such as T. cruzi requires much more. Scientists must integrate information generated from the recent analysis of the T. cruzi genome and proteome, with bioinformatics and cutting-edge techniques like advanced flow cytometry to unravel what is happening.

Grant support for the research came from the National Institutes of Health.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: T cells Tarleton crucial parasitic

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>