Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Everything in its place: Researchers identify brain cells used to categorize images

Findings shed light on the brain processes behind learning and memory

Socks in the sock drawer, shirts in the shirt drawer, the time-honored lessons of helping organize one's clothes learned in youth. But what parts of the brain are used to encode such categories as socks, shirts or any other item, and how does such learning take place?

New research from Harvard Medical School (HMS) investigators has identified an area of the brain where such memories are found. They report in the advanced online Nature that they have identified neurons that assist in categorizing visual stimuli. They found that the activity of neurons in a part of the brain called the parietal cortex encode the category, or meaning, of familiar visual images and that brain activity patterns changed dramatically as a result of learning. Their results suggest that categories are encoded by the activity of individual neurons (brain cells) and that the parietal cortex is a part of the brain circuitry that learns and recognizes the meaning of the things that we see.

"It was previously unknown that parietal cortex activity would show such dramatic changes as a result of learning new categories," says lead author David Freedman, PhD, HMS postdoctoral research fellow in neurobiology. "Some areas of the brain, particularly the frontal and temporal lobes, have been associated with visual categorization. Since these brain areas are all interconnected, an important next step will be to determine their relative roles in the categorization process."

... more about:
»Cortex »neurons »recognize »stimuli

We are not born with a built-in ability to recognize categories like table, chair, and camera. Instead, most categories such as these are learned through experience. Categories are a cornerstone of complex behavior, because they give meaning to the sights and sounds around us. For example, if you are told that a new electronic gadget is a telephone, this instantly provides a great deal of information about its relevant parts (speaker, microphone, keypad for dialing, etc.) and functions.

While much is known about how the brain processes simple visual features such as colors, angles, and motion-directions, less is known about how the brain learns and recognizes the meaning of stimuli. The process of grouping related visual images into categories allows the brain to organize stimuli according to their meaning and makes it possible for us to quickly make sense of our surroundings.

In these experiments, monkeys were taught to play a simple computer game in which they grouped members of a set of visual motion patterns into one of two categories. Freedman and senior author John Assad, PhD, HMS associate professor of neurobiology, then monitored the activity of neurons in two interconnected brain areas, the parietal cortex and the middle temporal area, while the monkeys played the categorization game. The activity of parietal neurons mirrored the monkeys' decisions about which of the two categories each visual pattern belonged. In contrast, neurons in the middle temporal area were more sensitive to differences in the visual appearance among the set of motion patterns and did not encode their category membership.

Category representations in the parietal cortex also changed dramatically with learning and experience. Over the course of several weeks, the monkeys were retrained to group the same visual patterns into two new categories. Parietal cortex activity was completely reorganized as a result of this retraining and encoded the visual patterns according to the newly learned categories.

"This research helps to further the understanding of how the brain learns and recognizes the significance, or meaning, of visual images and demonstrates that learning new categories can cause dramatic and long-lasting changes in brain activity," says Freedman. "We are continuing this work to determine if the parietal cortex is specialized for processing motion-based categories or if it plays a more general role in categorizing other types of visual stimuli, such as shapes, as well."

Freedman is optimistic that research of this type will eventually contribute to a better understanding of neurological diseases and disorders. "Understanding how the brain learns, stores, recognizes and recalls visual information will help us overcome impairments to these functions caused from brain damage and diseases, including strokes, Alzheimer's disease, and schizophrenia," Freedman says.

John Lacey | EurekAlert!
Further information:

Further reports about: Cortex neurons recognize stimuli

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>