Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Everything in its place: Researchers identify brain cells used to categorize images

30.08.2006
Findings shed light on the brain processes behind learning and memory

Socks in the sock drawer, shirts in the shirt drawer, the time-honored lessons of helping organize one's clothes learned in youth. But what parts of the brain are used to encode such categories as socks, shirts or any other item, and how does such learning take place?

New research from Harvard Medical School (HMS) investigators has identified an area of the brain where such memories are found. They report in the advanced online Nature that they have identified neurons that assist in categorizing visual stimuli. They found that the activity of neurons in a part of the brain called the parietal cortex encode the category, or meaning, of familiar visual images and that brain activity patterns changed dramatically as a result of learning. Their results suggest that categories are encoded by the activity of individual neurons (brain cells) and that the parietal cortex is a part of the brain circuitry that learns and recognizes the meaning of the things that we see.

"It was previously unknown that parietal cortex activity would show such dramatic changes as a result of learning new categories," says lead author David Freedman, PhD, HMS postdoctoral research fellow in neurobiology. "Some areas of the brain, particularly the frontal and temporal lobes, have been associated with visual categorization. Since these brain areas are all interconnected, an important next step will be to determine their relative roles in the categorization process."

... more about:
»Cortex »neurons »recognize »stimuli

We are not born with a built-in ability to recognize categories like table, chair, and camera. Instead, most categories such as these are learned through experience. Categories are a cornerstone of complex behavior, because they give meaning to the sights and sounds around us. For example, if you are told that a new electronic gadget is a telephone, this instantly provides a great deal of information about its relevant parts (speaker, microphone, keypad for dialing, etc.) and functions.

While much is known about how the brain processes simple visual features such as colors, angles, and motion-directions, less is known about how the brain learns and recognizes the meaning of stimuli. The process of grouping related visual images into categories allows the brain to organize stimuli according to their meaning and makes it possible for us to quickly make sense of our surroundings.

In these experiments, monkeys were taught to play a simple computer game in which they grouped members of a set of visual motion patterns into one of two categories. Freedman and senior author John Assad, PhD, HMS associate professor of neurobiology, then monitored the activity of neurons in two interconnected brain areas, the parietal cortex and the middle temporal area, while the monkeys played the categorization game. The activity of parietal neurons mirrored the monkeys' decisions about which of the two categories each visual pattern belonged. In contrast, neurons in the middle temporal area were more sensitive to differences in the visual appearance among the set of motion patterns and did not encode their category membership.

Category representations in the parietal cortex also changed dramatically with learning and experience. Over the course of several weeks, the monkeys were retrained to group the same visual patterns into two new categories. Parietal cortex activity was completely reorganized as a result of this retraining and encoded the visual patterns according to the newly learned categories.

"This research helps to further the understanding of how the brain learns and recognizes the significance, or meaning, of visual images and demonstrates that learning new categories can cause dramatic and long-lasting changes in brain activity," says Freedman. "We are continuing this work to determine if the parietal cortex is specialized for processing motion-based categories or if it plays a more general role in categorizing other types of visual stimuli, such as shapes, as well."

Freedman is optimistic that research of this type will eventually contribute to a better understanding of neurological diseases and disorders. "Understanding how the brain learns, stores, recognizes and recalls visual information will help us overcome impairments to these functions caused from brain damage and diseases, including strokes, Alzheimer's disease, and schizophrenia," Freedman says.

John Lacey | EurekAlert!
Further information:
http://www.hms.harvard.edu

Further reports about: Cortex neurons recognize stimuli

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>