Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain cancer cell metabolism changes

30.08.2006
Scientists at Jefferson Medical College and the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have found how a gene can dim the power production in the cell and in turn scale up its cancer-producing activities.

Two new studies provide stunning evidence suggesting that cyclin D1 – which is found in up to eight times normal amounts in half of all breast cancers – can cause a shift in the cancer cell's metabolism, changing its focus from energy production to proliferation. The findings, they say, may point to new therapeutic strategies against cancer.

Reporting last month in the journal Molecular and Cellular Biology, Kimmel Cancer Center director Richard G. Pestell, M.D., Ph.D., Professor and Chair of the Department of Cancer Biology at Jefferson Medical College, and colleagues showed for the first time that cyclin D1 – normally involved in promoting cell division – inhibits the size and activity of the cell's energy-making mitochondria.

In a separate report in August in the Proceedings of the National Academy of Sciences (PNAS), Dr. Pestell and a different team identified the mechanism behind cyclin D1's mitochondrial takeover. The research, taken together, shows that the inhibition leads to increased proliferation of cancer cells.

"From the cancer cell's point of view, the inhibition allows the cell to shift its biosynthetic priorities – it allows it to shift from making mitochondria themselves to synthesizing DNA and making the cell proliferate," says Dr. Pestell.

"Cyclin D1 shifts the individual cell's metabolism away from making mitochondria and towards cellular proliferation and the various genes involved in promoting such proliferation," he says.

The mitochondria often are called the "powerhouse" of the cell because they produce about 90 percent of the body's energy. They are located in the cytoplasm outside of each cell's nucleus.

Dr. Pestell notes that scientists have long suspected a link between mitochondrial malfunction and cancer, and since 1930 have known about such a change in metabolism when the cell turns cancerous. But the mechanisms haven't been well understood. When cells turn cancerous, they shift the way they metabolize glucose and other substrates. The researchers believe that their findings about cyclin D1 are part of such a mechanism. "These changes were observed previously," he says. "Now we know that the same factor that is involved in causing breast cancer also directly causes a metabolic shift."

I. Bernard Weinstein, M.D., Frode Jensen Professor of Medicine at Columbia University, notes that the 1930 discovery that the function of mitochondria is often impaired in cancer cells has remained unexplained and cancer research has been mainly focused on abnormalities in the function of genes in the nucleus of cells. The work by Dr. Pestell's group "provides novel insights into how these two types of abnormalities in cancer cells might be related."

In the PNAS publication, Dr. Pestell's team found that a protein, nuclear respiratory factor-1 (NRF-1), regulates a gene called mtTFA and is essential for mitochondrial

function. To make mitochondria, then, NRF-1 turns on mtTFA, which then activates genes that produce mitochondria. Cyclin D1 inactivates NRF-1, halting production.

"This discovery advances our understanding of the behavior of cancer cells and may suggest new types of cancer therapy," Dr. Weinstein says.

Dr. Pestell notes that such metabolic changes should leave the cancer cell vulnerable. "We'd like to link that change in metabolism to therapies," he says. "We've been able to prove that we can see changes in metabolism in the breast, and we should be able to target that change and kill the cancerous cells." He explains that specialists can image tumors based on changes in metabolism.

The results could also "provide a mechanism for targeting the mitochondria, rather than the nucleus," he says, noting that cancer drugs usually target nuclear genes. "Importantly, they provide a direct link between the mitochondria and the nucleus – one gene regulating both compartments of the cell. We didn't know what coordinated both functions. This shows both are functionally linked by a common gene."

"If we have therapies that target changes in metabolism, it allows us to develop therapies selective for the cancerous cells only," says Dr. Pestell.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: Cyclin Pestell cyclin D1 metabolism mitochondria proliferation

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>