Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists explain cancer cell metabolism changes

Scientists at Jefferson Medical College and the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia have found how a gene can dim the power production in the cell and in turn scale up its cancer-producing activities.

Two new studies provide stunning evidence suggesting that cyclin D1 – which is found in up to eight times normal amounts in half of all breast cancers – can cause a shift in the cancer cell's metabolism, changing its focus from energy production to proliferation. The findings, they say, may point to new therapeutic strategies against cancer.

Reporting last month in the journal Molecular and Cellular Biology, Kimmel Cancer Center director Richard G. Pestell, M.D., Ph.D., Professor and Chair of the Department of Cancer Biology at Jefferson Medical College, and colleagues showed for the first time that cyclin D1 – normally involved in promoting cell division – inhibits the size and activity of the cell's energy-making mitochondria.

In a separate report in August in the Proceedings of the National Academy of Sciences (PNAS), Dr. Pestell and a different team identified the mechanism behind cyclin D1's mitochondrial takeover. The research, taken together, shows that the inhibition leads to increased proliferation of cancer cells.

"From the cancer cell's point of view, the inhibition allows the cell to shift its biosynthetic priorities – it allows it to shift from making mitochondria themselves to synthesizing DNA and making the cell proliferate," says Dr. Pestell.

"Cyclin D1 shifts the individual cell's metabolism away from making mitochondria and towards cellular proliferation and the various genes involved in promoting such proliferation," he says.

The mitochondria often are called the "powerhouse" of the cell because they produce about 90 percent of the body's energy. They are located in the cytoplasm outside of each cell's nucleus.

Dr. Pestell notes that scientists have long suspected a link between mitochondrial malfunction and cancer, and since 1930 have known about such a change in metabolism when the cell turns cancerous. But the mechanisms haven't been well understood. When cells turn cancerous, they shift the way they metabolize glucose and other substrates. The researchers believe that their findings about cyclin D1 are part of such a mechanism. "These changes were observed previously," he says. "Now we know that the same factor that is involved in causing breast cancer also directly causes a metabolic shift."

I. Bernard Weinstein, M.D., Frode Jensen Professor of Medicine at Columbia University, notes that the 1930 discovery that the function of mitochondria is often impaired in cancer cells has remained unexplained and cancer research has been mainly focused on abnormalities in the function of genes in the nucleus of cells. The work by Dr. Pestell's group "provides novel insights into how these two types of abnormalities in cancer cells might be related."

In the PNAS publication, Dr. Pestell's team found that a protein, nuclear respiratory factor-1 (NRF-1), regulates a gene called mtTFA and is essential for mitochondrial

function. To make mitochondria, then, NRF-1 turns on mtTFA, which then activates genes that produce mitochondria. Cyclin D1 inactivates NRF-1, halting production.

"This discovery advances our understanding of the behavior of cancer cells and may suggest new types of cancer therapy," Dr. Weinstein says.

Dr. Pestell notes that such metabolic changes should leave the cancer cell vulnerable. "We'd like to link that change in metabolism to therapies," he says. "We've been able to prove that we can see changes in metabolism in the breast, and we should be able to target that change and kill the cancerous cells." He explains that specialists can image tumors based on changes in metabolism.

The results could also "provide a mechanism for targeting the mitochondria, rather than the nucleus," he says, noting that cancer drugs usually target nuclear genes. "Importantly, they provide a direct link between the mitochondria and the nucleus – one gene regulating both compartments of the cell. We didn't know what coordinated both functions. This shows both are functionally linked by a common gene."

"If we have therapies that target changes in metabolism, it allows us to develop therapies selective for the cancerous cells only," says Dr. Pestell.

Steve Benowitz | EurekAlert!
Further information:

Further reports about: Cyclin Pestell cyclin D1 metabolism mitochondria proliferation

More articles from Life Sciences:

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Bioluminescent sensor causes brain cells to glow in the dark
28.10.2016 | Vanderbilt University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>