Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abertay team devises chemical-free disinfectant system

30.08.2006
Abertay team devises chemical-free disinfectant system

One famous disinfectant’s claim to kill 99.9% of germs stone-dead has entered advertising folklore, but a team from the University of Abertay Dundee has gone literally a thousand times better.

Abertay researchers have devised a method of killing bacteria in water using microbubbles and ozone that has succeeded in destroying 99.9999% of E.coli bacteria in a given volume of water.

Ozone is increasingly used as an alternative to chlorination in the modern food and drink industry, but normally only eliminates 99.99% of bacteria. The Abertay team’s results from combining ozone with microbubbles are generating considerable interest among manufacturers seeking a means of ensuring ultrapure and almost completely bacteria-free water for use in food processing, without using potentially harmful chemicals.

... more about:
»bacteria »hydrodynamic »ozone

Rashmi Chand, a PhD student in Abertay’s School of Contemporary Sciences, employed hydrodynamic cavitation technology which pumps water very fast along a pipe and then through a small hole with such force that microbubbles or cavities are produced. These bubbles then implode, creating tiny pockets of high pressure and high temperature that kill bacteria.

The hydrodynamic cavitation by itself killed off 99 million out of 100 million E.coli cells in a body of water. Working with Abertay’s Professor David Bremner, Rashmi then investigated the effect of adding ozone and discovered that two bursts of the gas during the process further reduced the E.coli count to fewer than 100 cells.

Rashmi explained: “Food is a necessary for life, and safe food is essential for human health. In processing the food, ultrapure and completely bacterial free water is of prime importance.

“Conventional chemical disinfection techniques, particularly chlorination, suffer from disadvantages such as the formation of possibly carcinogenic by-products. Our method of disinfection by means of ozone and hydrodynamic cavitation opens up the possibility of eliminating or drastically reducing the use of these disinfecting chemicals,” she added.

The project was supported by the Food Processing Faraday Partnership Ltd (FPFP), which aims to promote improved interactions between the UK science, engineering and technology base and the UK food manufacturing industry.

FPFP were interested in the specialized ultrasound and hydrodynamic equipment available only at Abertay and provided a small grant to fund the acquisition of an ozoniser and enable the six-month research project to go ahead.

The Abertay team’s results are due to be published in a scientific journal in the near future.

Kevin Coe | alfa
Further information:
http://www.abertay.ac.uk

Further reports about: bacteria hydrodynamic ozone

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>