Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variants reveal susceptibility to cardiovascular disease

28.08.2006
Variations in a gene that acts as a switch to turn on other genes may predispose individuals to heart disease, an international team of researchers led by Duke University Medical Center scientists has discovered.

Further study of this master switch -- a gene called GATA2 -- and the genes it controls may uncover a regulatory network that influences whether a person inherits coronary artery disease, the most common form of heart disease in the Western world, according to the researchers. The discovery also may lead to development of genetic tests to predict an individual's risk of developing coronary artery disease, the scientists said.

"We hope that one day it will be possible to use these gene variations to predict who is susceptible to cardiovascular disease," said Jessica J. Connelly, a postdoctoral fellow at the Duke Center for Human Genetics and lead author on the study. "This finding is the first step before we can develop such a test for use in patients."

People who know they are at higher risk may be encouraged to take early steps to modify behaviors, such as smoking or consuming foods high in saturated fats, that are known to play a role in promoting heart disease, the scientists said.

The team reports its findings in the August 2006 issue of Public Library of Science (PLoS) Genetics. The research was sponsored by the National Institutes of Health.

Coronary artery disease affects more than 13 million Americans and is one of the nation's leading causes of death. The disease occurs when the arteries supplying blood to the heart become narrowed or clogged by plaque deposits. Left untreated, the disease can completely block the blood flow to the heart, leading to a heart attack.

Coronary artery disease is what scientists call a "complex" genetic disease – that is, it results from the accumulation of a number of small genetic changes that influence an individual's ability to cope with environmental and biological effects. While risk factors such as smoking, high blood pressure and high cholesterol are known to contribute to coronary artery disease, little is known about genes that render an individual susceptible to developing the disease, according to the Duke researchers.

"It is extremely difficult to pin down genes associated with a complex disease such as heart disease," said Simon G. Gregory, Ph.D., assistant professor of medicine at the Duke Center for Human Genetics and senior investigator on the study.

Two pieces of evidence pointed the researchers' attention to GATA2 as a likely candidate, Gregory said.

In a previous study, the researchers had scanned the entire genome -- the body's genetic blueprint -- of a group of families with at least two siblings with early onset coronary artery disease, looking for regions of "linkage" where DNA variations appeared to be inherited along with the disease. They found just such a region: a small section of the long arm of chromosome 3 where GATA2 is located. Chromosome 3 is one of the 23 pairs of chromosomes that comprise the human genome.

In a separate study led by David Seo, M.D., assistant professor of medicine, another group of Duke researchers found that GATA2 was turned on, or expressed, differently in diseased areas of aorta, the primary artery supplying the heart, in people with damaged hearts. This finding suggested that the gene could be involved in susceptibility to coronary artery disease, the researcher said.

In the current study, the researchers focused on specific gene variants, called single nucleotide polymorphisms (SNPs), which occur when a single nucleotide building block in the long strand of DNA is altered. The researchers sought SNPs that occurred more or less often in individuals with coronary artery disease than in individuals without it, as such a link would indicate that these gene variants were associated with the disease.

The researchers obtained DNA from 3,000 individuals from 1,000 families affected by coronary artery disease, through a collaborative study, called GENECARD, led by William E. Kraus, M.D., associate professor of medicine, under way at the Duke Center for Human Genetics. Using these DNA samples, the researchers scanned the GATA2 gene for SNPs that differed in sequence between individuals with and without coronary heart disease.

"We identified five SNPs that were significantly associated with early onset coronary artery disease," Gregory said.

The researchers then looked for the same SNPs in a separate group of 600 patients with early onset coronary artery disease who had volunteered to be studied while being examined at the cardiac catheterization laboratories at Duke University Hospital. The team identified significant association of two of the same SNPs in this independent group of patients. This finding, according to the researchers, validated the suspected link between GATA2 and coronary artery disease.

"A huge strength of our study is that we used two separate populations, finding the association between GATA2 and coronary artery disease in one population and then validating the finding in another," Connelly said.

GATA2 is a transcription factor, a master switch that controls when and where other genes are expressed. According the researchers, the SNPs identified in this study may change the ability of this transcription factor to influence the activity of many other genes, demonstrating how small genetic changes can influence multiple genetic outcomes.

The researchers said they now can use molecular techniques to look at where GATA2 acts within the genome to see what other genes also contribute to cause cardiovascular disease.

"As science progresses in this field, we are compiling a portfolio of genes that contribute to cardiovascular disease," Gregory said.

The hope, according to the Duke team, is that this discovery will be followed by others that eventually will enable scientists to identify people who are predisposed to developing coronary artery disease long before they develop any symptoms of the disease.

"What we have found is that changes in GATA2 affect susceptibility to developing coronary artery disease," Connelly said. "Eventually, we hope to create a diagnostic test containing all the genes affected in cardiovascular disease and use it to identify which SNPs are present in an individual. This approach will enable us to generate a profile of risk for developing cardiovascular disease."

The profile would not say conclusively whether or not a person would develop coronary heart disease, but could tell individuals whether they are more or less at risk for developing the disease, Gregory said.

Marla Vacek Broadfoot | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>