Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify antibiotic protein that defends the intestine against microbial invaders

28.08.2006
Researchers at UT Southwestern Medical Center have identified a protein that is made in the intestinal lining and targets microbial invaders, offering novel insights into how the intestine fends off pathogens and maintains friendly relations with symbiotic microbes.

The study, published today in the journal Science, might lead to new medications aimed at helping patients with inflammatory bowel disease. The findings might also aid in understanding the effectiveness of probiotics – mixtures of beneficial bacteria that are added to food products – in boosting the immune system, said Dr. Lora Hooper, assistant professor of immunology and the paper's senior author.

Scientists have known for decades that microbial cells in the human gut outnumber the body's own cells by about 10 to 1. Humans offer a safe haven to these microbes because they help us to break down food that we can't digest by ourselves. But it hasn't been clear how we keep these microscopic gut dwellers from invading our tissues and causing infections.

To help answer this question, Dr. Hooper's research team used mice raised inside sterile plastic bubbles. Because they are never in contact with the outer, microbe-filled world, these mice do not have the bacteria that normally colonize the gut. By exposing these "germ-free" mice to different types of gut bacteria, the researchers were able to observe how the epithelial cells lining the intestine react to microbial invaders.

... more about:
»Hooper »intestinal »invaders »microbial

"We found that when the gut lining comes into contact with bacteria, it produces a protein that binds to sugars that are part of the bacterial outer surfaces," Dr. Hooper said. "Once bound, these proteins quickly destroy their bacterial targets. They're killer proteins with a sweet tooth."

The protein, called RegIIIgamma in mice and HIP/PAP in humans, belongs to a protein class called lectins, which bind to sugar molecules. These particular lectins' seek-and-destroy mission may help to create an "electric fence" that shields the intestinal surface from invading bacteria, Dr. Hooper said.

The findings of this study may offer researchers new clues about the causes of inflammatory bowel disease. Most healthy people have a friendly relationship with their gut microbes, but in patients with inflammatory bowel disease this tolerant relationship turns sour and the immune system mounts an attack on the gut's microbial inhabitants that can lead to painful ulcers and bloody diarrhea. What triggers this attack is not clear, but the fact that these patients have elevated HIP/PAP production suggests that they are coping with increased numbers of invading intestinal bacteria.

The study may also help scientists devise more effective treatments for intestinal infections. "We are now working to understand the mechanism by which the intestinal lining senses bacterial threats. What turns this protein antibiotic on?" Dr. Hooper asked. "We want to explore whether this is something we can stimulate artificially to stave off pathogenic infections."

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Hooper intestinal invaders microbial

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>