Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify antibiotic protein that defends the intestine against microbial invaders

28.08.2006
Researchers at UT Southwestern Medical Center have identified a protein that is made in the intestinal lining and targets microbial invaders, offering novel insights into how the intestine fends off pathogens and maintains friendly relations with symbiotic microbes.

The study, published today in the journal Science, might lead to new medications aimed at helping patients with inflammatory bowel disease. The findings might also aid in understanding the effectiveness of probiotics – mixtures of beneficial bacteria that are added to food products – in boosting the immune system, said Dr. Lora Hooper, assistant professor of immunology and the paper's senior author.

Scientists have known for decades that microbial cells in the human gut outnumber the body's own cells by about 10 to 1. Humans offer a safe haven to these microbes because they help us to break down food that we can't digest by ourselves. But it hasn't been clear how we keep these microscopic gut dwellers from invading our tissues and causing infections.

To help answer this question, Dr. Hooper's research team used mice raised inside sterile plastic bubbles. Because they are never in contact with the outer, microbe-filled world, these mice do not have the bacteria that normally colonize the gut. By exposing these "germ-free" mice to different types of gut bacteria, the researchers were able to observe how the epithelial cells lining the intestine react to microbial invaders.

... more about:
»Hooper »intestinal »invaders »microbial

"We found that when the gut lining comes into contact with bacteria, it produces a protein that binds to sugars that are part of the bacterial outer surfaces," Dr. Hooper said. "Once bound, these proteins quickly destroy their bacterial targets. They're killer proteins with a sweet tooth."

The protein, called RegIIIgamma in mice and HIP/PAP in humans, belongs to a protein class called lectins, which bind to sugar molecules. These particular lectins' seek-and-destroy mission may help to create an "electric fence" that shields the intestinal surface from invading bacteria, Dr. Hooper said.

The findings of this study may offer researchers new clues about the causes of inflammatory bowel disease. Most healthy people have a friendly relationship with their gut microbes, but in patients with inflammatory bowel disease this tolerant relationship turns sour and the immune system mounts an attack on the gut's microbial inhabitants that can lead to painful ulcers and bloody diarrhea. What triggers this attack is not clear, but the fact that these patients have elevated HIP/PAP production suggests that they are coping with increased numbers of invading intestinal bacteria.

The study may also help scientists devise more effective treatments for intestinal infections. "We are now working to understand the mechanism by which the intestinal lining senses bacterial threats. What turns this protein antibiotic on?" Dr. Hooper asked. "We want to explore whether this is something we can stimulate artificially to stave off pathogenic infections."

Toni Heinzl | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: Hooper intestinal invaders microbial

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>