Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia researchers restore memory lost in mice with Alzheimer's

28.08.2006
Boosting a newly discovered enzyme helps mice regain normal cognitive function

Researchers at Columbia University Medical Center have successfully restored normal memory and synaptic function in mice suffering from Alzheimer's disease. The study was published today on the website of the journal Cell.

Scientists at Columbia's Taub Institute for Research on Alzheimer's Disease and the Aging Brain have identified an enzyme that is required for normal cognition but that is impaired in a mouse model of Alzheimer's. They discovered that mice regained the ability to form new memories when the enzyme's function was elevated.

The research suggests that boosting the function of this enzyme, known as ubiquitin C-terminal hydrolase L1 (Uch-L1), may provide a promising strategy for battling Alzheimer's disease, and perhaps reversing its effects.

... more about:
»Alzheimer' »Restore »UCH-L1 »enzyme

In the new study, the Columbia researchers discovered that the enzyme Uch-L1 is part of a molecular network that controls a memory molecule called CREB, which is inhibited by amyloid beta proteins in people with Alzheimer's. By increasing Uch-L1 levels in mice that had Alzheimer's, they were able to improve the animals' ability to create new memories.

"Because the amyloid beta proteins that cause Alzheimer's may play a normal, important physiological role in the body, we can't destroy them as a therapy," explained Ottavio Arancio, M.D., Ph.D., Assistant Professor of Pathology at Columbia University Medical Center and co-principal investigator of the study with Michael Shelanski, MD, Ph.D., Chairman of the Department of Pathology at the Columbia University College of Physicians and Surgeons. "What makes this newly discovered enzyme exciting as a potentially effective therapy is that it restores memory without destroying amyloid beta proteins."

The researchers tested the memory of the mice by putting them in a cage where they were exposed to a mild stimulus when they touched the cage floor. Mice with normal memory remain still the second time they're placed in the cage, as they recognize the place where they were initially exposed to the stimulus. But mice with Alzheimer's-like changes do not remember the place, and continue moving within the cage. When the Alzheimer's mice were treated with Uch-L1, they acted like normal mice, and remained still.

"While this discovery is very promising, its proven effectiveness is limited to animal models and it will take some time before it could lead to therapies in humans," said Dr. Shelanski. "We continue to work towards that crucial goal." The work was supported by the National Institutes of Neurological Disease and Stroke and the Alzheimer's Center Program of the National Institute of Aging.

Craig LeMoult | EurekAlert!
Further information:
http://www.columbia.edu
http://www.cumc.columbia.edu

Further reports about: Alzheimer' Restore UCH-L1 enzyme

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>