Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire arrays can detect signals along individual neurons

28.08.2006
Merger of nanowires and neurons could boost efforts to measure and understand brain activity

Opening a whole new interface between nanotechnology and neuroscience, scientists at Harvard University have used slender silicon nanowires to detect, stimulate, and inhibit nerve signals along the axons and dendrites of live mammalian neurons.

Harvard chemist Charles M. Lieber and colleagues report on this marriage of nanowires and neurons this week in the journal Science.

"We describe the first artificial synapses between nanoelectronic devices and individual mammalian neurons, and also the first linking of a solid-state device -- a nanowire transistor -- to the neuronal projections that interconnect and carry information in the brain," says Lieber, the Mark Hyman, Jr., Professor of Chemistry in Harvard's Faculty of Arts and Sciences and Division of Engineering and Applied Sciences. "These extremely local devices can detect, stimulate, and inhibit propagation of neuronal signals with a spa-tial resolution unmatched by existing techniques."

... more about:
»Axon »Neuronal »Synapse »individual »nanowire »propagation

Electrophysiological measurements of brain activity play an important role in understanding signal propagation through individual neurons and neuronal networks, but existing technologies are relatively crude: Micropipette electrodes poked into cells are invasive and harmful, and microfabricated electrode arrays are too bulky to detect activity at the level of individual axons and dendrites, the neuronal projections responsible for electrical signal propagation and inter-neuron communication.

By contrast, the tiny nanowire transistors developed by Lieber and colleagues gently touch a neuronal projection to form a hybrid synapse, making them noninvasive, and are thousands of times smaller than the electronics now used to measure brain activity.

Lieber's group has previously shown that nanowires can detect, with great precision, molecular markers indicating the presence of cancer in the body, as well as single viruses. Their latest work takes advantage of the size similarities between ultra-fine silicon nanowires and the axons and dendrites projecting from nerve cells: Nanowires, like neuronal offshoots, are just tens of nanometers in width, making the thin filaments a good match for intercepting nerve signals.

Because the nanowires are so slight -- their contact with a neuron is no more than 20 millionths of a meter in length -- Lieber and colleagues were able to measure and manipulate electrical conductance at as many as 50 locations along a single axon.

The current work involves measurement of signals only within single mammalian neurons; the researchers are now working toward monitoring signaling among larger networks of nerve cells. Lieber says the devices could also eventually be configured to measure or detect neurotransmitters, the chemicals that leap synapses to carry electrical impulses from one neuron to another.

"This work could have a revolutionary impact on science and technology," Lieber says. "It provides a powerful new approach for neuroscience to study and manipulate signal propagation in neuronal networks at a level unmatched by other techniques; it provides a new paradigm for building sophisticated interfaces between the brain and external neural prosthetics; it represents a new, powerful, and flexible approach for real-time cellular assays useful for drug discovery and other applications; and it opens the possibility for hybrid circuits that couple the strengths of digital nanoelectronic and biological computing components."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Axon Neuronal Synapse individual nanowire propagation

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>