Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire arrays can detect signals along individual neurons

28.08.2006
Merger of nanowires and neurons could boost efforts to measure and understand brain activity

Opening a whole new interface between nanotechnology and neuroscience, scientists at Harvard University have used slender silicon nanowires to detect, stimulate, and inhibit nerve signals along the axons and dendrites of live mammalian neurons.

Harvard chemist Charles M. Lieber and colleagues report on this marriage of nanowires and neurons this week in the journal Science.

"We describe the first artificial synapses between nanoelectronic devices and individual mammalian neurons, and also the first linking of a solid-state device -- a nanowire transistor -- to the neuronal projections that interconnect and carry information in the brain," says Lieber, the Mark Hyman, Jr., Professor of Chemistry in Harvard's Faculty of Arts and Sciences and Division of Engineering and Applied Sciences. "These extremely local devices can detect, stimulate, and inhibit propagation of neuronal signals with a spa-tial resolution unmatched by existing techniques."

... more about:
»Axon »Neuronal »Synapse »individual »nanowire »propagation

Electrophysiological measurements of brain activity play an important role in understanding signal propagation through individual neurons and neuronal networks, but existing technologies are relatively crude: Micropipette electrodes poked into cells are invasive and harmful, and microfabricated electrode arrays are too bulky to detect activity at the level of individual axons and dendrites, the neuronal projections responsible for electrical signal propagation and inter-neuron communication.

By contrast, the tiny nanowire transistors developed by Lieber and colleagues gently touch a neuronal projection to form a hybrid synapse, making them noninvasive, and are thousands of times smaller than the electronics now used to measure brain activity.

Lieber's group has previously shown that nanowires can detect, with great precision, molecular markers indicating the presence of cancer in the body, as well as single viruses. Their latest work takes advantage of the size similarities between ultra-fine silicon nanowires and the axons and dendrites projecting from nerve cells: Nanowires, like neuronal offshoots, are just tens of nanometers in width, making the thin filaments a good match for intercepting nerve signals.

Because the nanowires are so slight -- their contact with a neuron is no more than 20 millionths of a meter in length -- Lieber and colleagues were able to measure and manipulate electrical conductance at as many as 50 locations along a single axon.

The current work involves measurement of signals only within single mammalian neurons; the researchers are now working toward monitoring signaling among larger networks of nerve cells. Lieber says the devices could also eventually be configured to measure or detect neurotransmitters, the chemicals that leap synapses to carry electrical impulses from one neuron to another.

"This work could have a revolutionary impact on science and technology," Lieber says. "It provides a powerful new approach for neuroscience to study and manipulate signal propagation in neuronal networks at a level unmatched by other techniques; it provides a new paradigm for building sophisticated interfaces between the brain and external neural prosthetics; it represents a new, powerful, and flexible approach for real-time cellular assays useful for drug discovery and other applications; and it opens the possibility for hybrid circuits that couple the strengths of digital nanoelectronic and biological computing components."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Axon Neuronal Synapse individual nanowire propagation

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>