Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanowire arrays can detect signals along individual neurons

28.08.2006
Merger of nanowires and neurons could boost efforts to measure and understand brain activity

Opening a whole new interface between nanotechnology and neuroscience, scientists at Harvard University have used slender silicon nanowires to detect, stimulate, and inhibit nerve signals along the axons and dendrites of live mammalian neurons.

Harvard chemist Charles M. Lieber and colleagues report on this marriage of nanowires and neurons this week in the journal Science.

"We describe the first artificial synapses between nanoelectronic devices and individual mammalian neurons, and also the first linking of a solid-state device -- a nanowire transistor -- to the neuronal projections that interconnect and carry information in the brain," says Lieber, the Mark Hyman, Jr., Professor of Chemistry in Harvard's Faculty of Arts and Sciences and Division of Engineering and Applied Sciences. "These extremely local devices can detect, stimulate, and inhibit propagation of neuronal signals with a spa-tial resolution unmatched by existing techniques."

... more about:
»Axon »Neuronal »Synapse »individual »nanowire »propagation

Electrophysiological measurements of brain activity play an important role in understanding signal propagation through individual neurons and neuronal networks, but existing technologies are relatively crude: Micropipette electrodes poked into cells are invasive and harmful, and microfabricated electrode arrays are too bulky to detect activity at the level of individual axons and dendrites, the neuronal projections responsible for electrical signal propagation and inter-neuron communication.

By contrast, the tiny nanowire transistors developed by Lieber and colleagues gently touch a neuronal projection to form a hybrid synapse, making them noninvasive, and are thousands of times smaller than the electronics now used to measure brain activity.

Lieber's group has previously shown that nanowires can detect, with great precision, molecular markers indicating the presence of cancer in the body, as well as single viruses. Their latest work takes advantage of the size similarities between ultra-fine silicon nanowires and the axons and dendrites projecting from nerve cells: Nanowires, like neuronal offshoots, are just tens of nanometers in width, making the thin filaments a good match for intercepting nerve signals.

Because the nanowires are so slight -- their contact with a neuron is no more than 20 millionths of a meter in length -- Lieber and colleagues were able to measure and manipulate electrical conductance at as many as 50 locations along a single axon.

The current work involves measurement of signals only within single mammalian neurons; the researchers are now working toward monitoring signaling among larger networks of nerve cells. Lieber says the devices could also eventually be configured to measure or detect neurotransmitters, the chemicals that leap synapses to carry electrical impulses from one neuron to another.

"This work could have a revolutionary impact on science and technology," Lieber says. "It provides a powerful new approach for neuroscience to study and manipulate signal propagation in neuronal networks at a level unmatched by other techniques; it provides a new paradigm for building sophisticated interfaces between the brain and external neural prosthetics; it represents a new, powerful, and flexible approach for real-time cellular assays useful for drug discovery and other applications; and it opens the possibility for hybrid circuits that couple the strengths of digital nanoelectronic and biological computing components."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Axon Neuronal Synapse individual nanowire propagation

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>