Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

African parasite makes component of fat differently from all other organisms

28.08.2006
Johns Hopkins researchers shed light on the culprit behind 'sleeping sickness'

Studying the parasite that causes African sleeping sickness, scientists at Johns Hopkins have discovered a previously unknown way of making fatty acids, a component of fat and the outer layer of all cells.

The find unveils more about the biology of this hard-to-kill parasite and could lead to a target for designing new drugs to fight the illness that infects a half-million people and kills 50,000 a year worldwide.

Results of the study, in the Aug. 25 issue of Cell, "show that this is a completely new biochemical pathway for making fatty acids," says Soo Hee Lee, Ph.D., a postdoctoral fellow in the Department of Biological Chemistry at the Institute for Basic Biomedical Sciences at Hopkins. "It may be that the enzymes in the pathway could be good targets for designing drugs to treat sleeping sickness."

The single-celled trypanosome that causes African sleeping sickness, transmitted between humans and animals by bloodsucking tsetse flies, goes through several different stages in its life cycle. One such form is harbored by the insect and the other multiplies in a host's bloodstream.

There, the parasite avoids detection by the human immune system by replacing each of the 10 million proteins on its outer layer - known as the cell membrane - with different proteins that are not recognized by immune cells. These proteins are attached to the cell membrane by an anchor composed in part of a fatty acid only 14 units long - dubbed myristate -- whereas typically, in other organisms, these types of anchors contain longer fatty acids, generally 16 or 18 units long.

"For many years we thought the parasite had to get the myristate from its human host because we never could see any evidence that it could make the fatty acid itself," says Paul Englund, Ph.D., a professor of biological chemistry in the Institute of Basic Biomedical Sciences at Hopkins. "Several years ago we found that it does actually make myristate as well as other fatty acids, and now we found that it uses a biochemical pathway we never knew to look for."

They learned about this new fatty acid-making pathway by hunting the trypanosome genome for stretches of DNA known to be involved in fatty acid synthesis in other organisms, like animals and plants.

The researchers reasoned that knocking out the fatty acid-making genes would prevent the parasite from making myristate and other fatty acids.

But when one member of the research team, Jennifer Stephens, knocked out a single gene in the trypanosome known to make fatty acids in other organisms, there was no change in the parasite's ability to make myristate. Surprised, the researchers then examined the trypanosome genome more carefully and discovered enzymes that in other organisms are known to increase the size of a fatty acid molecule - dubbed elongases, for making fatty acids longer - but never have been shown to actually make a new fatty acid molecule.

Lee knocked out these elongases to see if the parasite might have difficulty making fatty acids. To the researchers' surprise, the parasites lacking elongases were unable to make the 14-unit myristate or other fatty acids.

"A novel feature of the elongase pathway is that it contains four different enzymes that take turns in elongating fatty acids," says Lee. "This modular pathway allows the parasite to control the size of the fatty acids it makes."

"It turns out that trypanosomes use an entirely unique mechanism of making fatty acids. No other organism ever studied uses elongases to make them," says Englund, suggesting that attacking biochemical pathways that make fatty acids could be a way to treat sleeping sickness. According to the researchers, the research community is extremely interested in developing drugs that target bacterial enzymes involved in fatty acid synthesis. An example of one is called isoniazid, which currently is used to treat tuberculosis.

"Trypanosomes cause significant health problems in remote areas of Africa with poor health care," says Englund. "There is tremendous need for new drugs to cure these diseases."

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: African elongase fatty acids myristate organism parasite trypanosome

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>