Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

African parasite makes component of fat differently from all other organisms

28.08.2006
Johns Hopkins researchers shed light on the culprit behind 'sleeping sickness'

Studying the parasite that causes African sleeping sickness, scientists at Johns Hopkins have discovered a previously unknown way of making fatty acids, a component of fat and the outer layer of all cells.

The find unveils more about the biology of this hard-to-kill parasite and could lead to a target for designing new drugs to fight the illness that infects a half-million people and kills 50,000 a year worldwide.

Results of the study, in the Aug. 25 issue of Cell, "show that this is a completely new biochemical pathway for making fatty acids," says Soo Hee Lee, Ph.D., a postdoctoral fellow in the Department of Biological Chemistry at the Institute for Basic Biomedical Sciences at Hopkins. "It may be that the enzymes in the pathway could be good targets for designing drugs to treat sleeping sickness."

The single-celled trypanosome that causes African sleeping sickness, transmitted between humans and animals by bloodsucking tsetse flies, goes through several different stages in its life cycle. One such form is harbored by the insect and the other multiplies in a host's bloodstream.

There, the parasite avoids detection by the human immune system by replacing each of the 10 million proteins on its outer layer - known as the cell membrane - with different proteins that are not recognized by immune cells. These proteins are attached to the cell membrane by an anchor composed in part of a fatty acid only 14 units long - dubbed myristate -- whereas typically, in other organisms, these types of anchors contain longer fatty acids, generally 16 or 18 units long.

"For many years we thought the parasite had to get the myristate from its human host because we never could see any evidence that it could make the fatty acid itself," says Paul Englund, Ph.D., a professor of biological chemistry in the Institute of Basic Biomedical Sciences at Hopkins. "Several years ago we found that it does actually make myristate as well as other fatty acids, and now we found that it uses a biochemical pathway we never knew to look for."

They learned about this new fatty acid-making pathway by hunting the trypanosome genome for stretches of DNA known to be involved in fatty acid synthesis in other organisms, like animals and plants.

The researchers reasoned that knocking out the fatty acid-making genes would prevent the parasite from making myristate and other fatty acids.

But when one member of the research team, Jennifer Stephens, knocked out a single gene in the trypanosome known to make fatty acids in other organisms, there was no change in the parasite's ability to make myristate. Surprised, the researchers then examined the trypanosome genome more carefully and discovered enzymes that in other organisms are known to increase the size of a fatty acid molecule - dubbed elongases, for making fatty acids longer - but never have been shown to actually make a new fatty acid molecule.

Lee knocked out these elongases to see if the parasite might have difficulty making fatty acids. To the researchers' surprise, the parasites lacking elongases were unable to make the 14-unit myristate or other fatty acids.

"A novel feature of the elongase pathway is that it contains four different enzymes that take turns in elongating fatty acids," says Lee. "This modular pathway allows the parasite to control the size of the fatty acids it makes."

"It turns out that trypanosomes use an entirely unique mechanism of making fatty acids. No other organism ever studied uses elongases to make them," says Englund, suggesting that attacking biochemical pathways that make fatty acids could be a way to treat sleeping sickness. According to the researchers, the research community is extremely interested in developing drugs that target bacterial enzymes involved in fatty acid synthesis. An example of one is called isoniazid, which currently is used to treat tuberculosis.

"Trypanosomes cause significant health problems in remote areas of Africa with poor health care," says Englund. "There is tremendous need for new drugs to cure these diseases."

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: African elongase fatty acids myristate organism parasite trypanosome

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>