Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic link to cot death identified

25.08.2006
Babies born with specific variants of three key genes are 14 times more likely to die from cot death, new research has found.

The findings - published in Human Immunology - build on earlier research by The University of Manchester team that had already associated one of these genes with the condition.

The discovery of two further risk genes, say the paper's authors, is a major step forward in understanding the causes of cot death or `sudden infant death syndrome' (SIDS).

“We first identified an association between SIDS and specific variants of a gene called Interleukin-10 five years ago,” said microbiologist Dr David Drucker, who led the research. “Quite simply, a baby who had particular variations of this gene was at greater risk of SIDS than other babies.

“Now, we have discovered two more genes implicated in SIDS and when a baby has certain genetic variants or `polymorphisms' of all three of these genes he or she can be up to 14 times more likely to die from the condition.”

The genes investigated by the team all play a roll in the body's immune response to infection. Previous research, carried out with colleagues at Lancaster University, had shown that SIDS is associated with commonly occurring bacteria that babies up to the age of one year may lack immunity to.

Infants aged two to four months, in particular, have very weak immune systems and may not cope well with infectious agents they encounter in their environment.

Interleukin-10 (IL-10), as well as the other two genes - Interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) – are involved in the production of chemicals called cytokines which are important for the correct functioning of our immune system.

Specific variants of these cytokine-producing genes, says the research, leads to an excessive inflammatory response to bacterial infection resulting in cot death. In the case of VEGF, the polymorphism associated with SIDS could conceivably result in poor fetal lung development.

“This research greatly advances our understanding of the basic causes of SIDS, which is not a single disease but a collection of different causes of death,” said Dr Drucker, who carried out the work in collaboration with paediatric pathologist Dr Anthony Barson.

“Being able to detect high-risk babies means that health care and social provision can be aimed at the most vulnerable infants. In theory, commercially available and licensed human immune serum could be given to those children most at risk.”

Dr Drucker, whose previous work has also explained why smoking and sleeping position are also risk factors in SIDS, says this latest research will help establish the cause of death in certain cases.

“Forensic scientists would be able to assess the likelihood of a baby dying from SIDS through genetic measurements and so help prevent the sort of tragic miscarriages of justice that have happened in the past.

“But ultimately, this research will improve our ability to identify in advance which babies will be at risk of SIDS so their mothers can be personally advised to eliminate other risk factors such as dangerous sleeping position for their infant.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>