Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BGSU biologist trying to crack microscopic code

24.08.2006
Dr. Ray Larsen is trying to learn a second language.

The Bowling Green State University biologist wants to crack the communication code of proteins, especially the ones whose "talking" aids and abets disease.

"Proteins interact; they 'talk' to each other," the associate professor says. "It's how they know what to do, and it's how most of the things that need to happen for living organisms get done."

Over the past three years he has received $300,000 in funding from the National Science Foundation for his research.

What talking proteins have to do with infectious disease is a story that unfolds in the submicroscopic world of molecular biology. It starts with bacteria, which are cloaked by an outer membrane--a defensive barrier against the harsh elements of their environment, whether toxins in nature or the protective antibodies of an infected host. Specific proteins interact to support this shield, and knowing how they communicate would provide a key to disabling it, Larsen says.

Once communication questions are answered, a goal is to develop drugs to break the barrier, rendering the bacteria more susceptible to the human body's natural defenses--antibodies--as well as certain antibiotics, he points out.

While keeping potential dangers out, the outer membrane must also be porous enough to allow nutrients in, he continues. As an analogy, he cites a house with a yard and a chain-link fence that "keeps the dogs out of the roses but lets the butterflies through."

A short distance separates the outer membrane and the rest of the organism. How the bacteria maintain their barrier when it's physically removed from the rest of the cell, and thus separated from its energy source, is where his interest lies.

"The barrier is not self-sustaining, so the bacteria must export energy to it," says Larsen, referring to protein systems that take cellular energy and use it to support the outer membrane. "It's kind of like getting oil from the Middle East."

Proteins do all the business of cells, including energy transfer, which a couple of different systems handle, according to Larsen. The TonB system, which controls certain "gates" in the outer membrane, is a good model for resolving questions of how a protein recognizes and communicates with others with whom it's exchanging energy, he says. A similar system, called the Tol system, is important in maintaining the defensive barrier, although which proteins it delivers energy to as part of that process isn't known.

Finding that answer is a long-term objective, he adds, saying it could help lead to the development of a drug that could break the barrier.

Some drugs already target the outer defenses of bacteria. Perhaps best known is penicillin, one of several existing antibiotics that successfully target specific structures required for the barrier function to work, Larsen notes. The outer membrane is stabilized by a grid of sugar polymers, and penicillin wrecks the grid, making the cells susceptible to a body's natural defenses.

Disrupting energy flow--knocking out the TonB and Tol systems--would provide another powerful weapon against disease-causing bacteria, he says, but researchers must first understand how the two systems work. They are similar enough that they have some relatively interchangeable parts, but they don't swap perfectly. He compares the situation to two people speaking different dialects of the same language--"not everything makes total sense." But the TonB-Tol "cross talk" does provide a tool for mixing and matching parts of the systems and asking what's important and what isn't.

"To begin understanding how proteins talk, we first made random mutations--we broke things and then asked what happened," Larsen says. "That strategy worked well and allowed us to identify the key 'words.' Now we want to know what the 'words' mean, and we are starting by asking what happens when we mix the 'dialects.'

"It's genetic tinker toys," and an area, he adds, in which BGSU doctoral student Kerry Brinkman is "breaking new ground."

Larsen and his graduate assistants do their work with E. coli bacteria, which he calls "the world's best Lego set" and a genetic model for 60 years, on a par with rodents in other research areas. The problem, however, is that laboratory E. coli are the "98-pound weaklings in the real world," not offering barriers as robust as other bacteria maintain outside the lab, he says.

So he has begun studying the type of bacteria that is the leading cause of shellfish poisoning in the United States. It lives, he notes, in two "incredibly different environments"--estuaries of the Gulf of Mexico and Chesapeake Bay, and the human intestinal tract. That means the types of proteins in its outer membrane must change to reflect the environment, giving researchers a "thread you can pull," he says.

Living in and adapting to different environments is "part of who they are," but also, Larsen hopes, an avenue to additional funding for his research of the bacteria, which he calls a "little brother" to the organism that causes cholera.

Scott Borgelt | EurekAlert!
Further information:
http://www.bgsu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>