Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein found to protect breast cancer tumors from chemotherapy

24.08.2006
Finding may help women get more effective treatment

About half of women whose breast cancer is treated with standard chemotherapy have their cancer return within five years. Most chemotherapeutic drugs have undesirable side effects, but there has been no way to predict who would benefit and who wouldn't. Fortunately, new research findings at the University of Southern California could change that.

Researchers at the USC/Norris Comprehensive Cancer Center have discovered a new biological marker in tumors that can help indicate whether a woman's breast cancer will respond to the most commonly prescribed chemotherapy drugs.

Amy S. Lee, Ph.D., professor of biochemistry and molecular biology in the Keck School of Medicine of the University of Southern California, isolated the gene for the GRP78 protein (78-kDA glucose-regulated protein) in 1980. It normally helps protect cells from dying, particularly when they are under stress from a lack of glucose. In her current research, Lee finds that breast cancer tumors with high levels of GRP78 are protected from a common chemotherapy regimen based on Adriamycin, a topoisomerase inhibitor. Her findings are published as a "Priority Report" in the August 15 issue of Cancer Research.

"The importance of this study is in its potential to help clinicians who treat cancer," Lee says. "It will help sort out the patients who won't respond to particular treatment regimens and will have a higher chance of cancer recurrence."

Lee and her colleagues analyzed records of 432 women with Stage II or III breast cancer treated at the USC/Norris Cancer Hospital, of whom 209 received Adriamycin-based chemotherapy. Tumor samples were collected from 127 of the women before they received chemotherapy. The samples were analyzed using antibodies to detect and stain GRP78 protein. Review of the samples under a microscope showed that two-thirds (67 percent) of the tumors tested had high levels of GRP78.

Subsequent analysis of the patients' records showed that women whose tumors had higher levels of GRP78 were more likely to have had the cancer recur. That was particularly likely if the women received Adriamycin-based chemotherapy and no further treatment with the chemotherapy drug taxane, regardless of their tumor stage. Likewise, women who had mastectomies followed by Adriamycin-based therapy were more likely to have the cancer return if their tumors had elevated levels of GRP78, compared to identically treated patients with low level of GRP78.

Conversely, the study also suggests that women who received Adriamycin-based therapy followed by additional treatment with taxane had a lower risk of cancer recurrence if their tumors had elevated levels of GRP78.

Lee hopes others will confirm her findings in subsequent research, and that it will eventually lead to a standard laboratory test that can screen all women diagnosed with breast cancer. "GRP78 will be one more bio-marker to help us offer designer medicine – treatments that are tailored to the patient's cancer instead of one-size-fits-all," Lee says.

The study is anticipated to have broad implications since other types of cancers have also been found to have elevated levels of GRP78. To that end, Lee is also collaborating with USC/Norris pathologist Richard Cote, M.D., on a study of the protein's role in prostate cancer.

Lee says the access to specialists from various disciplines was essential. "This research could not have happened without the collaborative environment at the USC/ Norris Comprehensive Cancer Center," she says. Lee's interdisciplinary research team included clinical oncologist Darcy Spicer, M.D., pathologist Peter Nichols, M.D., epidemiologist Mimi C. Yu, Ph.D., biostatistician Susan Groshen, Ph.D., and epidemiology Ph.D. student Eunjung Lee.

Kathleen O'Neil | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>