Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein found to protect breast cancer tumors from chemotherapy

24.08.2006
Finding may help women get more effective treatment

About half of women whose breast cancer is treated with standard chemotherapy have their cancer return within five years. Most chemotherapeutic drugs have undesirable side effects, but there has been no way to predict who would benefit and who wouldn't. Fortunately, new research findings at the University of Southern California could change that.

Researchers at the USC/Norris Comprehensive Cancer Center have discovered a new biological marker in tumors that can help indicate whether a woman's breast cancer will respond to the most commonly prescribed chemotherapy drugs.

Amy S. Lee, Ph.D., professor of biochemistry and molecular biology in the Keck School of Medicine of the University of Southern California, isolated the gene for the GRP78 protein (78-kDA glucose-regulated protein) in 1980. It normally helps protect cells from dying, particularly when they are under stress from a lack of glucose. In her current research, Lee finds that breast cancer tumors with high levels of GRP78 are protected from a common chemotherapy regimen based on Adriamycin, a topoisomerase inhibitor. Her findings are published as a "Priority Report" in the August 15 issue of Cancer Research.

"The importance of this study is in its potential to help clinicians who treat cancer," Lee says. "It will help sort out the patients who won't respond to particular treatment regimens and will have a higher chance of cancer recurrence."

Lee and her colleagues analyzed records of 432 women with Stage II or III breast cancer treated at the USC/Norris Cancer Hospital, of whom 209 received Adriamycin-based chemotherapy. Tumor samples were collected from 127 of the women before they received chemotherapy. The samples were analyzed using antibodies to detect and stain GRP78 protein. Review of the samples under a microscope showed that two-thirds (67 percent) of the tumors tested had high levels of GRP78.

Subsequent analysis of the patients' records showed that women whose tumors had higher levels of GRP78 were more likely to have had the cancer recur. That was particularly likely if the women received Adriamycin-based chemotherapy and no further treatment with the chemotherapy drug taxane, regardless of their tumor stage. Likewise, women who had mastectomies followed by Adriamycin-based therapy were more likely to have the cancer return if their tumors had elevated levels of GRP78, compared to identically treated patients with low level of GRP78.

Conversely, the study also suggests that women who received Adriamycin-based therapy followed by additional treatment with taxane had a lower risk of cancer recurrence if their tumors had elevated levels of GRP78.

Lee hopes others will confirm her findings in subsequent research, and that it will eventually lead to a standard laboratory test that can screen all women diagnosed with breast cancer. "GRP78 will be one more bio-marker to help us offer designer medicine – treatments that are tailored to the patient's cancer instead of one-size-fits-all," Lee says.

The study is anticipated to have broad implications since other types of cancers have also been found to have elevated levels of GRP78. To that end, Lee is also collaborating with USC/Norris pathologist Richard Cote, M.D., on a study of the protein's role in prostate cancer.

Lee says the access to specialists from various disciplines was essential. "This research could not have happened without the collaborative environment at the USC/ Norris Comprehensive Cancer Center," she says. Lee's interdisciplinary research team included clinical oncologist Darcy Spicer, M.D., pathologist Peter Nichols, M.D., epidemiologist Mimi C. Yu, Ph.D., biostatistician Susan Groshen, Ph.D., and epidemiology Ph.D. student Eunjung Lee.

Kathleen O'Neil | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>