Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein found to protect breast cancer tumors from chemotherapy

24.08.2006
Finding may help women get more effective treatment

About half of women whose breast cancer is treated with standard chemotherapy have their cancer return within five years. Most chemotherapeutic drugs have undesirable side effects, but there has been no way to predict who would benefit and who wouldn't. Fortunately, new research findings at the University of Southern California could change that.

Researchers at the USC/Norris Comprehensive Cancer Center have discovered a new biological marker in tumors that can help indicate whether a woman's breast cancer will respond to the most commonly prescribed chemotherapy drugs.

Amy S. Lee, Ph.D., professor of biochemistry and molecular biology in the Keck School of Medicine of the University of Southern California, isolated the gene for the GRP78 protein (78-kDA glucose-regulated protein) in 1980. It normally helps protect cells from dying, particularly when they are under stress from a lack of glucose. In her current research, Lee finds that breast cancer tumors with high levels of GRP78 are protected from a common chemotherapy regimen based on Adriamycin, a topoisomerase inhibitor. Her findings are published as a "Priority Report" in the August 15 issue of Cancer Research.

"The importance of this study is in its potential to help clinicians who treat cancer," Lee says. "It will help sort out the patients who won't respond to particular treatment regimens and will have a higher chance of cancer recurrence."

Lee and her colleagues analyzed records of 432 women with Stage II or III breast cancer treated at the USC/Norris Cancer Hospital, of whom 209 received Adriamycin-based chemotherapy. Tumor samples were collected from 127 of the women before they received chemotherapy. The samples were analyzed using antibodies to detect and stain GRP78 protein. Review of the samples under a microscope showed that two-thirds (67 percent) of the tumors tested had high levels of GRP78.

Subsequent analysis of the patients' records showed that women whose tumors had higher levels of GRP78 were more likely to have had the cancer recur. That was particularly likely if the women received Adriamycin-based chemotherapy and no further treatment with the chemotherapy drug taxane, regardless of their tumor stage. Likewise, women who had mastectomies followed by Adriamycin-based therapy were more likely to have the cancer return if their tumors had elevated levels of GRP78, compared to identically treated patients with low level of GRP78.

Conversely, the study also suggests that women who received Adriamycin-based therapy followed by additional treatment with taxane had a lower risk of cancer recurrence if their tumors had elevated levels of GRP78.

Lee hopes others will confirm her findings in subsequent research, and that it will eventually lead to a standard laboratory test that can screen all women diagnosed with breast cancer. "GRP78 will be one more bio-marker to help us offer designer medicine – treatments that are tailored to the patient's cancer instead of one-size-fits-all," Lee says.

The study is anticipated to have broad implications since other types of cancers have also been found to have elevated levels of GRP78. To that end, Lee is also collaborating with USC/Norris pathologist Richard Cote, M.D., on a study of the protein's role in prostate cancer.

Lee says the access to specialists from various disciplines was essential. "This research could not have happened without the collaborative environment at the USC/ Norris Comprehensive Cancer Center," she says. Lee's interdisciplinary research team included clinical oncologist Darcy Spicer, M.D., pathologist Peter Nichols, M.D., epidemiologist Mimi C. Yu, Ph.D., biostatistician Susan Groshen, Ph.D., and epidemiology Ph.D. student Eunjung Lee.

Kathleen O'Neil | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>