Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies molecular process underlying leukemia

24.08.2006
New research from the University of North Carolina at Chapel Hill has identified a molecular process in cells that is crucial to the development of two common leukemias. The findings help explain how fundamental cell processes go awry during cancer development and represent a first step toward new, targeted treatments for leukemia.

Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) leukemias develop when certain chromosomal abnormalities disrupt the genes that control blood cell formation. Without the proper instructions from these genes, blood cells produced by bone marrow never fully mature; these immature cells, which can't carry vital nutrients or fight infection, then flood the body.

The researchers showed how a fusion of proteins created by flawed chromosomes can trigger leukemia development. The study also identified an enzyme's important role in this process.

The results were published online Aug. 20 and will appear in a future print issue of the journal Nature Cell Biology.

The research was led by Dr. Yi Zhang, professor of biochemistry and biophysics in the UNC School of Medicine and a Howard Hughes Medical Institute Investigator. Zhang is also a member of the UNC Lineberger Comprehensive Cancer Center. The work was supported by grants from the National Institutes of Health.

The study examined chromosomal translocation, in which a fragment of a chromosome breaks off and joins another. Chromosomes are the cellular structures that carry DNA. Translocation along chromosomes can result in the generation of fusion proteins that often "misregulate" specific genes, including genes that can cause leukemia, and is a common cause of leukemia, Zhang said. The most common chromosome translocations found in leukemia patients involve the mixed lineage leukemia gene, MLL. One of the fusion proteins that partners with MLL in leukemia is AF10.

AF10 has been shown to fuse with another protein, CALM, in patients with acute lymphoblastic leukemia or acute myeloid leukemia. But it has been unclear whether that fusion could cause leukemia, and little is known about how this CALM-AF10 fusion may lead to the disease, Zhang said. "Results from this study provide important insights into these questions," he said.

Zhang and his colleagues showed that the CALM-AF10 fusion is "necessary and sufficient" for cellular transformation to leukemia in a mouse model of the disease. They also discovered that the fusion overactivates (also called upregulation) the gene HoxA5. Moreover, upregulation of the HoxA5 gene is necessary for cellular transformation to leukemia, the study shows.

Overactive Hox genes are known to play a role in cancer, Zhang said. "In mammals, Hox genes play an important role in embryonic development. They help set the developmental pattern. They also play a role in cancer. That's why their expression must be tightly controlled."

The researchers also identified an enzyme, hDOT1L, as important for upregulating gene expression by the CALM-AF10 fusion protein.

This finding builds on earlier work by the Zhang laboratory involving another fusion protein, MLL-AF10, and the enzyme's upregulation of the Hox gene HoxA9.

Having demonstrated the role of hDOT1L in leukemia development of two different fusion proteins, the Zhang lab is exploring the possibility of developing drugs that target the hDOT1L enzyme. "Understanding the molecular mechanism underlying leukemia development will certainly help in this endeavor, Zhang said.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Controlling robots with brainwaves and hand gestures

20.06.2018 | Information Technology

Electron sandwich doubles thermoelectric performance

20.06.2018 | Power and Electrical Engineering

Intelligent maps will help robots navigate in your home

20.06.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>