Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies molecular process underlying leukemia

24.08.2006
New research from the University of North Carolina at Chapel Hill has identified a molecular process in cells that is crucial to the development of two common leukemias. The findings help explain how fundamental cell processes go awry during cancer development and represent a first step toward new, targeted treatments for leukemia.

Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) leukemias develop when certain chromosomal abnormalities disrupt the genes that control blood cell formation. Without the proper instructions from these genes, blood cells produced by bone marrow never fully mature; these immature cells, which can't carry vital nutrients or fight infection, then flood the body.

The researchers showed how a fusion of proteins created by flawed chromosomes can trigger leukemia development. The study also identified an enzyme's important role in this process.

The results were published online Aug. 20 and will appear in a future print issue of the journal Nature Cell Biology.

The research was led by Dr. Yi Zhang, professor of biochemistry and biophysics in the UNC School of Medicine and a Howard Hughes Medical Institute Investigator. Zhang is also a member of the UNC Lineberger Comprehensive Cancer Center. The work was supported by grants from the National Institutes of Health.

The study examined chromosomal translocation, in which a fragment of a chromosome breaks off and joins another. Chromosomes are the cellular structures that carry DNA. Translocation along chromosomes can result in the generation of fusion proteins that often "misregulate" specific genes, including genes that can cause leukemia, and is a common cause of leukemia, Zhang said. The most common chromosome translocations found in leukemia patients involve the mixed lineage leukemia gene, MLL. One of the fusion proteins that partners with MLL in leukemia is AF10.

AF10 has been shown to fuse with another protein, CALM, in patients with acute lymphoblastic leukemia or acute myeloid leukemia. But it has been unclear whether that fusion could cause leukemia, and little is known about how this CALM-AF10 fusion may lead to the disease, Zhang said. "Results from this study provide important insights into these questions," he said.

Zhang and his colleagues showed that the CALM-AF10 fusion is "necessary and sufficient" for cellular transformation to leukemia in a mouse model of the disease. They also discovered that the fusion overactivates (also called upregulation) the gene HoxA5. Moreover, upregulation of the HoxA5 gene is necessary for cellular transformation to leukemia, the study shows.

Overactive Hox genes are known to play a role in cancer, Zhang said. "In mammals, Hox genes play an important role in embryonic development. They help set the developmental pattern. They also play a role in cancer. That's why their expression must be tightly controlled."

The researchers also identified an enzyme, hDOT1L, as important for upregulating gene expression by the CALM-AF10 fusion protein.

This finding builds on earlier work by the Zhang laboratory involving another fusion protein, MLL-AF10, and the enzyme's upregulation of the Hox gene HoxA9.

Having demonstrated the role of hDOT1L in leukemia development of two different fusion proteins, the Zhang lab is exploring the possibility of developing drugs that target the hDOT1L enzyme. "Understanding the molecular mechanism underlying leukemia development will certainly help in this endeavor, Zhang said.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>