Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of key enzyme in plague bacterium found

22.08.2006
Researchers at the National Institute of Standards and Technology (NIST) have solved the structure of a key enzyme from the bacterium responsible for plague, finding that it has a highly unusual configuration. The results may shed light both on how the bacterium kills and on fundamental cell signaling processes.

The NIST team determined the three-dimensional shape of class IV adenylyl cyclase (AC), an enzyme found in plague bacteria -- Yersinia pestis -- by purifying and crystallizing the protein and using X-ray crystallography at the Center for Advanced Research in Biotechnology to resolve its configuration. Adenylyl cyclase is a fundamental enzyme found in one form or another in organisms ranging from bacteria to mammals. It synthesizes cyclic AMP (cAMP*), an important signaling molecule that in turn triggers a variety of cellular processes. Six distinct classes of AC are known, playing a wide variety of roles. AC-II is part of the anthrax bacterium's killing mechanism, for example, while AC-III triggers adrenaline release in humans.

Shape plays an essential role in determining the biological function of a protein, but it's very difficult to determine for such large molecules. Three-dimensional structures are known for only two other forms of AC. The NIST experiments revealed that AC-IV has a shape completely different from the other two known shapes. AC-IV folds into a rare form of a barrel-like shape previously seen in only three other unrelated proteins.

The purpose of AC-IV in plague is not well understood, but it may play a role in disrupting cell processes in the infected host. Plague is not as common as it was in the Middle Ages, when it killed millions, but the World Health Organization still logs about 1,000 to 3,000 cases a year, an average of 10 to 15 in the United States. It is rated as a highest category biothreat agent by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases. Fundamental molecular data on this enzyme and its various forms may be critical to the development of defenses against plague and other pathogens, including Bacillus anthracis (Anthrax) and Bordetella pertussis (Whooping cough). Beyond that, structural and functional studies of AC-IV, with its unusual shape, may lead to deeper understanding of the cAMP signaling mechanism and other fundamental cellular processes.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>