Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healing potential discovered in everyday human brain cells

21.08.2006
Common brain cells may have stem-cell-like potential

University of Florida researchers have shown ordinary human brain cells may share the prized qualities of self-renewal and adaptability normally associated with stem cells.

Writing online today (Aug. 16) in Development, scientists from UF's McKnight Brain Institute describe how they used mature human brain cells taken from epilepsy patients to generate new brain tissue in mice.

Furthermore, they can coax these pedestrian human cells to produce large amounts of new brain cells in culture, with one cell theoretically able to begin a cycle of cell division that does not stop until the cells number about 10 to the 16th power.

"We can theoretically take a single brain cell out of a human being and - with just this one cell - generate enough brain cells to replace every cell of the donor's brain and conceivably those of 50 million other people," said Dennis Steindler, Ph.D., executive director of UF's McKnight Brain Institute. "This is a completely new source of human brain cells that can potentially be used to fight Parkinson's disease, Alzheimer's disease, stroke and a host of other brain disorders. It would probably only take months to get enough material for a human transplant operation."

The findings document for the first time the ability of common human brain cells to morph into different cell types, a previously unknown characteristic, and are the result of the research team's long-term investigations of adult human stem cells and rodent embryonic stem cells.

Last year, the researchers published details about how they used stem-like brain cells from rodents to duplicate neurogenesis - the process of generating new brain cells - in a dish. The latest findings go further, showing common human brain cells can generate different cell types in cell cultures. In addition, when researchers transplanted these human cells into mice, the cells effectively incorporated in a variety of brain regions.

The human cells were acquired from patients who had undergone surgical treatment for epilepsy and were extracted from support tissue within the gray matter, which is not known for harboring stem cells.

When the donor cells were subjected to a bath of growth agents within cell cultures, a type of cell emerged that behaves like something called a neural progenitor - a cell that is a bit further along in development than a stem cell but shares a stem cell's vaunted ability to divide and transform into different types of brain cells.

Even when the cells from the epilepsy patients were transplanted into mice, bypassing any growth enhancements, they were able to take cues from their surroundings and produce new neurons.

"It was a long and difficult process, but we were able to induce what are basically support cells in the human brain to form beautiful new neurons in a dish," said Noah Walton, a graduate student in the neuroscience department at the UF College of Medicine. "But what we really needed is for these support cells to turn into neurons in the brain, and we found we could get them to do it. Something in the environment in the rodent brain is sufficient to get these cells to become neurons."

Scientists speculate a small amount of existing progenitors may be emerging from the gray matter of the brain and multiplying in torrents, or perhaps the aging clock of the mature cells actually turns backward when the donor cells are in a new environment, returning them to past lives as progenitors or as stem cells.

"It's been shown that the same sorts of tissue from the mouse brain can give rise to rapidly dividing cells, but this shows it is true with human cells," said Ben Barres, M.D., Ph.D., a professor of neurobiology at the Stanford University School of Medicine who was not involved in the research. "That these cells were able to integrate into tissue in an animal model and actually survive - it was extremely important to show that. Now the question is what will these cells do in a human brain? Will they be able to survive for the long term and rebuild circuitry? This work is a first step toward that end."

In addition to using the cells in treatments to repair or replace damaged brain tissue, the ability to massively expand cell populations could prove useful in efforts to test the safety and efficacy of new drugs. It is also possible to genetically modify the cells to produce neurotrophins - substances that help brain tissue survive, researchers said.

John D. Pastor | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>