Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain gene shows dramatic difference from chimp to human

21.08.2006
One of the fastest-evolving pieces of DNA in the human genome is a gene linked to brain development, according to findings by an international team of researchers published in the Aug. 17 issue of the journal Nature.

In a computer-based search for pieces of DNA that have undergone the most change since the ancestors of humans and chimps diverged, "Human Accelerated Region 1" or HAR1, was a clear standout, said lead author Katie Pollard, assistant professor at the UC Davis Genome Center and the Department of Statistics.

"It's evolving incredibly rapidly," Pollard said. "It's really an extreme case."

As a postdoctoral researcher in the lab of David Haussler at UC Santa Cruz, Pollard first scanned the chimpanzee genome for stretches of DNA that were highly similar between chimpanzees, mice and rats. Then she compared those regions between chimpanzees and humans, looking for the DNA that, presumably, makes a big difference between other animals and ourselves.

HAR1 has only two changes in its 118 letters of DNA code between chimpanzees and chickens. But in the roughly five million years since we shared an ancestor with the chimpanzees, 18 of the 118 letters that make up HAR1 in the human genome have changed.

Experiments led by Sofie Salama at UC Santa Cruz showed that HAR1 is part of two overlapping genes, named HAR1F and HAR1R. Evidence suggests that neither gene produces a protein, but the RNA produced by the HAR1 sequence probably has its own function. Most of the other genes identified by the study also fall outside protein-coding regions, Pollard said.

Structurally, the HAR1 RNA appears to form a stable structure made up of a series of helices. The shapes of human and chimpanzee HAR1 RNA molecules are significantly different, the researchers found.

RNA is usually thought of as an intermediate step in translating DNA into protein. But scientists have begun to realize that some pieces of RNA can have their own direct effects, especially in controlling other genes.

The proteins of humans and chimps are very similar to each other, but are put together in different ways, Pollard said. Differences in how, when and where genes are turned on likely give rise to many of the physical differences between humans and other primates.

Researchers at UC Santa Cruz, the University of Brussels, Belgium and University Claude Bernard in Lyon, France, showed that HAR1F is active during a critical stage in development of the cerebral cortex, a much more complicated structure in humans than in apes and monkeys. The researchers found HAR1F RNA associated with a protein called reelin in the cortex of embryos early in development. The same pattern of expression is found in both humans and rhesus monkeys, but since the human HAR1F has a unique structure, it may act in a slightly different way. Those differences may explain some of the differences between a human and chimp brain.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>