Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU biologists uncover mechanisms that shape cells for better or worse

18.08.2006
In a landmark study, biologists at Florida State University have uncovered a specific genetic and molecular mechanism that causes cell polarity -- the asymmetric shape or composition critical to a cell's proper functioning. Their findings in fruit fly eggs may help to clarify how muscular dystrophy and some cancers develop in humans.

That's because many of the genes involved in the cell-to-cell communication that triggers the development of cell polarity in Drosophila oocytes (unfertilized fruit fly eggs) also are known players in the pathogenesis of those diseases.

The research performed by FSU Assistant Professor Wu-Min Deng and doctoral student John S. Poulton in the department of biological science could foster a better overall understanding of polarity and how it develops -- and why it doesn't, sometimes with dire consequences -- in other types of cells and organisms.

Results from the FSU study are described in the Aug. 14 online edition of the journal PNAS (Proceedings of the National Academy of Sciences).

"We have identified a novel component in the polarization of the fruit fly egg and the signals that determine the anterior-posterior positioning of its head and abdomen," said Deng.

"Such a discovery in the biological model provided by Drosophila oocytes has broad implications in humans, where, for example, neurons in the brain are designed, or polarized, to interpret information from the sense organs, and intestinal cells are polarized to take up nutrients and move them into the bloodstream," he said.

Poulton explained that in order to ensure cell polarity in the Drosophila oocyte, the cells surrounding it activate a classic signaling pathway known as the Epidermal Growth Factor Receptor (EGFR) in a process that is also essential to development in humans and a wide range of other organisms.

"Our study shows that EGFR activation in the cells surrounding the fruit fly oocyte acts to turn off a gene known as Dystroglycan, halting production of its protein. EGFR must shut down Dystroglycan in order for the oocyte to properly polarize," Poulton said.

"We proved this by observing that mutated forms of genes in the EGFR pathway of cells surrounding the oocyte led to abnormally high levels of Dystroglycan protein, which in turn disrupted oocyte polarity. However, even with the mutated EGFR pathway gene, we were able to restore normal polarity by turning Dystroglycan off artificially," he said.

"While much remains unknown, our research confirms that EGFR regulation of Dystroglycan plays a key role in the polarization of the oocyte," Deng said. "That knowledge adds a pivotal link to our understanding of precisely how cell-to-cell communication occurs in this model system."

In recognition of groundbreaking work to-date by the FSU scientists -- and to further the understanding of the mechanisms involved in cell-cell communication leading to oocyte polarity -- the National Institutes of Health have awarded Deng a highly competitive "R01" (Research Project Grant) for health-related research and development.

Just after joining the FSU faculty in 2004, Deng led a Drosophila oogenesis study that revealed mechanisms of cell-to-cell signaling along other key pathways. Those findings were published in the 2005 editions of the journal Development.

The current study -- "Dystroglycan down-regulation links EGFR signaling and anterior-posterior polarity formation in the Drosophila oocyte" -- relied heavily on the state-of-the-art laser confocal microscope in FSU's Biological Science Imaging Resource facility. Funding for the research came in part from the American Heart Association.

Wu-Min Deng | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>