Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU biologists uncover mechanisms that shape cells for better or worse

18.08.2006
In a landmark study, biologists at Florida State University have uncovered a specific genetic and molecular mechanism that causes cell polarity -- the asymmetric shape or composition critical to a cell's proper functioning. Their findings in fruit fly eggs may help to clarify how muscular dystrophy and some cancers develop in humans.

That's because many of the genes involved in the cell-to-cell communication that triggers the development of cell polarity in Drosophila oocytes (unfertilized fruit fly eggs) also are known players in the pathogenesis of those diseases.

The research performed by FSU Assistant Professor Wu-Min Deng and doctoral student John S. Poulton in the department of biological science could foster a better overall understanding of polarity and how it develops -- and why it doesn't, sometimes with dire consequences -- in other types of cells and organisms.

Results from the FSU study are described in the Aug. 14 online edition of the journal PNAS (Proceedings of the National Academy of Sciences).

"We have identified a novel component in the polarization of the fruit fly egg and the signals that determine the anterior-posterior positioning of its head and abdomen," said Deng.

"Such a discovery in the biological model provided by Drosophila oocytes has broad implications in humans, where, for example, neurons in the brain are designed, or polarized, to interpret information from the sense organs, and intestinal cells are polarized to take up nutrients and move them into the bloodstream," he said.

Poulton explained that in order to ensure cell polarity in the Drosophila oocyte, the cells surrounding it activate a classic signaling pathway known as the Epidermal Growth Factor Receptor (EGFR) in a process that is also essential to development in humans and a wide range of other organisms.

"Our study shows that EGFR activation in the cells surrounding the fruit fly oocyte acts to turn off a gene known as Dystroglycan, halting production of its protein. EGFR must shut down Dystroglycan in order for the oocyte to properly polarize," Poulton said.

"We proved this by observing that mutated forms of genes in the EGFR pathway of cells surrounding the oocyte led to abnormally high levels of Dystroglycan protein, which in turn disrupted oocyte polarity. However, even with the mutated EGFR pathway gene, we were able to restore normal polarity by turning Dystroglycan off artificially," he said.

"While much remains unknown, our research confirms that EGFR regulation of Dystroglycan plays a key role in the polarization of the oocyte," Deng said. "That knowledge adds a pivotal link to our understanding of precisely how cell-to-cell communication occurs in this model system."

In recognition of groundbreaking work to-date by the FSU scientists -- and to further the understanding of the mechanisms involved in cell-cell communication leading to oocyte polarity -- the National Institutes of Health have awarded Deng a highly competitive "R01" (Research Project Grant) for health-related research and development.

Just after joining the FSU faculty in 2004, Deng led a Drosophila oogenesis study that revealed mechanisms of cell-to-cell signaling along other key pathways. Those findings were published in the 2005 editions of the journal Development.

The current study -- "Dystroglycan down-regulation links EGFR signaling and anterior-posterior polarity formation in the Drosophila oocyte" -- relied heavily on the state-of-the-art laser confocal microscope in FSU's Biological Science Imaging Resource facility. Funding for the research came in part from the American Heart Association.

Wu-Min Deng | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

These could revolutionize the world

24.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>