Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Completed genome set to transform the cow

Sequencing phase of Bovine Genome Sequencing project ends

The ability of scientists to improve health and disease management of cattle and enhance the nutritional value of beef and dairy products has received a major boost with the release this week of the most complete sequence of the cow genome ever assembled.

Developed by an international consortium of research organisations, including CSIRO and AgResearch New Zealand, the new bovine sequence contains 2.9 billion DNA base pairs and incorporates one-third more data than earlier versions.

Differences in just one of these base pairs (known as single nucleotide polymorphisms or SNPs) can affect the functioning of a gene and mean the difference between a highly productive and a poorly performing animal. Over two million of these SNPs, which are genetic signposts or markers, were identified as part of the project.

Australia's representative on the US $53 million Bovine Genome Sequencing Project, CSIRO's Dr Ross Tellam, says the new map marks the end of the sequencing phase of the project, with the focus now on analysing the available data.

"This is very valuable information," Dr Tellam says. "We could potentially achieve as much improvement in cattle breeding and production in 50 years as we have over the last 8000 years of traditional farming."

Cattle geneticists will use the bovine genome as a template to highlight genetic variation within and between cattle breeds, and between cattle and other mammal species.

The head of bioinformatics research at CSIRO Livestock Industries, Dr Brian Dalrymple, says the new data is very valuable because it provides researchers with a more complete picture of the genes in a cow and how variations in the DNA code influence desirable production traits.

"We can use this data to identify those genes that are involved in important functions like lactation, reproduction, muscling, growth rate and disease resistance," Dr Dalrymple says.

The Hereford breed was selected for the bulk of the sequencing project, which began in December 2003. Holstein, Angus, Jersey, Limousin, Norwegian Red and Brahman animals were also sequenced to detect specific genetic differences between breeds.

"This is just the beginning of a revolution in the way we produce our animals and food," Dr Dalrymple says. "Once we have a complete set of genes that influence tenderness, for example, we will be able to predict that animals of a certain type, fed a particular type of pasture or grain, will consistently produce meat of a particular standard of tenderness and marbling."

He says, despite the centuries of inbreeding involved in developing different cattle breeds, most maintain a "surprisingly large" degree of genetic diversity. Contributors to the US$53 million international effort to sequence the genome of the cow (Bos taurus) include: the National Human Genome Research Institute (NHGRI), which is part of the National Institutes of Health (NIH); the U.S. Department of Agriculture's Agricultural Research Service and Cooperative State Research, Education, and Extension Service; the state of Texas; Genome Canada via Genome British Columbia, The Commonwealth Scientific and Industrial Research Organization of Australia; Agritech Investments Ltd., Dairy InSight, Inc, AgResearch Ltd; the Kleberg Foundation; and the National, Texas and South Dakota Beef Check-off Funds.

Lisa Palu | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>