Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Completed genome set to transform the cow

18.08.2006
Sequencing phase of Bovine Genome Sequencing project ends

The ability of scientists to improve health and disease management of cattle and enhance the nutritional value of beef and dairy products has received a major boost with the release this week of the most complete sequence of the cow genome ever assembled.

Developed by an international consortium of research organisations, including CSIRO and AgResearch New Zealand, the new bovine sequence contains 2.9 billion DNA base pairs and incorporates one-third more data than earlier versions.

Differences in just one of these base pairs (known as single nucleotide polymorphisms or SNPs) can affect the functioning of a gene and mean the difference between a highly productive and a poorly performing animal. Over two million of these SNPs, which are genetic signposts or markers, were identified as part of the project.

Australia's representative on the US $53 million Bovine Genome Sequencing Project, CSIRO's Dr Ross Tellam, says the new map marks the end of the sequencing phase of the project, with the focus now on analysing the available data.

"This is very valuable information," Dr Tellam says. "We could potentially achieve as much improvement in cattle breeding and production in 50 years as we have over the last 8000 years of traditional farming."

Cattle geneticists will use the bovine genome as a template to highlight genetic variation within and between cattle breeds, and between cattle and other mammal species.

The head of bioinformatics research at CSIRO Livestock Industries, Dr Brian Dalrymple, says the new data is very valuable because it provides researchers with a more complete picture of the genes in a cow and how variations in the DNA code influence desirable production traits.

"We can use this data to identify those genes that are involved in important functions like lactation, reproduction, muscling, growth rate and disease resistance," Dr Dalrymple says.

The Hereford breed was selected for the bulk of the sequencing project, which began in December 2003. Holstein, Angus, Jersey, Limousin, Norwegian Red and Brahman animals were also sequenced to detect specific genetic differences between breeds.

"This is just the beginning of a revolution in the way we produce our animals and food," Dr Dalrymple says. "Once we have a complete set of genes that influence tenderness, for example, we will be able to predict that animals of a certain type, fed a particular type of pasture or grain, will consistently produce meat of a particular standard of tenderness and marbling."

He says, despite the centuries of inbreeding involved in developing different cattle breeds, most maintain a "surprisingly large" degree of genetic diversity. Contributors to the US$53 million international effort to sequence the genome of the cow (Bos taurus) include: the National Human Genome Research Institute (NHGRI), which is part of the National Institutes of Health (NIH); the U.S. Department of Agriculture's Agricultural Research Service and Cooperative State Research, Education, and Extension Service; the state of Texas; Genome Canada via Genome British Columbia, The Commonwealth Scientific and Industrial Research Organization of Australia; Agritech Investments Ltd., Dairy InSight, Inc, AgResearch Ltd; the Kleberg Foundation; and the National, Texas and South Dakota Beef Check-off Funds.

Lisa Palu | EurekAlert!
Further information:
http://www.hgsc.bcm.tmc.edu
http://www.ncbi.nih.gov/Genbank
http://www.ddbj.nig.ac.jp

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>