Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers seek to solve mystery of natural HIV control

18.08.2006
In search of new vaccine strategies, study will examine genetics, immune systems of those able to suppress viral replication

An international, multi-institutional research consortium is seeking to discover how a few HIV-infected individuals are naturally able to suppress replication of the virus. The Elite Controller Collaborative Study (http://www.mgh.harvard.edu/aids/hiv_elite_controllers.asp), the first large-scale haplotype-mapping study in people infected with HIV, is searching for genetic factors that may explain these individuals' unique ability to control the virus without treatment, sometimes as long as 25 years after infection.

"If we could discover how these individuals can coexist with this virus without damage to their immune system and could find a way to replicate that ability in others, we would have a recipe for halting the HIV epidemic," says Bruce Walker, MD, director of Partners AIDS Research Center (PARC) at Massachusetts General Hospital and an initial organizer of the Elite Controller Collaborative Study. Walker discussed the project in a media briefing today at the 16th International AIDS Conference in Toronto.

Most people infected with HIV cannot control replication of the virus with their immune systems alone. Unless antiviral medications are used, the virus continues to reproduce until it overwhelms the CD4 T helper cells, suppressing the immune response and leading to AIDS. In the early 1990s, it was recognized that a small minority of HIV-positive people remained healthy and did not progress to AIDS despite many years of infection. The term "long-term nonprogressors" was used to refer to this group. With today's more sensitive techniques for measuring viral levels in the bloodstream, individuals who are able to maintain low levels of HIV replication can be identified soon after their infection is diagnosed. Some of these viremic controllers can maintain viral loads below 2,000 copies/ml, while an even smaller group, called elite controllers, have viral loads too low to be detected by currently available assays.

"The primary goal of the Elite Controller Collaborative Study is to identify the mechanism that explains control of viral replication in both of these groups, " says Florencia Pereyra, MD, of PARC, lead coordinator of the research team. "We want to use that knowledge to develop a first-generation HIV vaccine, which may not cure or prevent infection but could successfully suppress viral levels. Since this natural ability is so rare, we need to work with collaborators around the world to recruit the number of participants we will need to determine what is going on.

"We expect to need data from at least 1,000 such individuals in order to define the genetic factors associated with this extraordinary outcome," she adds. "This effort will only be possible with the collaboration of HIV researchers, providers, advocacy groups and most important the HIV-infected individuals that fall in this category."

Those eligible to participate in the Elite Controller Collaborative Study are HIV-positive adults, aged 18 to 75, who have maintained viral loads below 2,000 copies without taking HIV antiviral medications. Participation involves having a single blood sample taken, which can be done by participants' local healthcare providers. Those located near a participating research center may choose to be followed over time and provide additional blood samples.

"So far we have enrolled nearly 200 participants from 25 U.S. states, and we are looking forward to adding participants from other countries," says Pereyra. Potential participants or collaborating providers seeking more information should contact Rachel Rosenberg, Partners AIDS Research Center, (617) 726-5536 or rrosenberg2@partners.org.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>