Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers seek to solve mystery of natural HIV control

In search of new vaccine strategies, study will examine genetics, immune systems of those able to suppress viral replication

An international, multi-institutional research consortium is seeking to discover how a few HIV-infected individuals are naturally able to suppress replication of the virus. The Elite Controller Collaborative Study (, the first large-scale haplotype-mapping study in people infected with HIV, is searching for genetic factors that may explain these individuals' unique ability to control the virus without treatment, sometimes as long as 25 years after infection.

"If we could discover how these individuals can coexist with this virus without damage to their immune system and could find a way to replicate that ability in others, we would have a recipe for halting the HIV epidemic," says Bruce Walker, MD, director of Partners AIDS Research Center (PARC) at Massachusetts General Hospital and an initial organizer of the Elite Controller Collaborative Study. Walker discussed the project in a media briefing today at the 16th International AIDS Conference in Toronto.

Most people infected with HIV cannot control replication of the virus with their immune systems alone. Unless antiviral medications are used, the virus continues to reproduce until it overwhelms the CD4 T helper cells, suppressing the immune response and leading to AIDS. In the early 1990s, it was recognized that a small minority of HIV-positive people remained healthy and did not progress to AIDS despite many years of infection. The term "long-term nonprogressors" was used to refer to this group. With today's more sensitive techniques for measuring viral levels in the bloodstream, individuals who are able to maintain low levels of HIV replication can be identified soon after their infection is diagnosed. Some of these viremic controllers can maintain viral loads below 2,000 copies/ml, while an even smaller group, called elite controllers, have viral loads too low to be detected by currently available assays.

"The primary goal of the Elite Controller Collaborative Study is to identify the mechanism that explains control of viral replication in both of these groups, " says Florencia Pereyra, MD, of PARC, lead coordinator of the research team. "We want to use that knowledge to develop a first-generation HIV vaccine, which may not cure or prevent infection but could successfully suppress viral levels. Since this natural ability is so rare, we need to work with collaborators around the world to recruit the number of participants we will need to determine what is going on.

"We expect to need data from at least 1,000 such individuals in order to define the genetic factors associated with this extraordinary outcome," she adds. "This effort will only be possible with the collaboration of HIV researchers, providers, advocacy groups and most important the HIV-infected individuals that fall in this category."

Those eligible to participate in the Elite Controller Collaborative Study are HIV-positive adults, aged 18 to 75, who have maintained viral loads below 2,000 copies without taking HIV antiviral medications. Participation involves having a single blood sample taken, which can be done by participants' local healthcare providers. Those located near a participating research center may choose to be followed over time and provide additional blood samples.

"So far we have enrolled nearly 200 participants from 25 U.S. states, and we are looking forward to adding participants from other countries," says Pereyra. Potential participants or collaborating providers seeking more information should contact Rachel Rosenberg, Partners AIDS Research Center, (617) 726-5536 or

Sue McGreevey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>