Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers seek to solve mystery of natural HIV control

18.08.2006
In search of new vaccine strategies, study will examine genetics, immune systems of those able to suppress viral replication

An international, multi-institutional research consortium is seeking to discover how a few HIV-infected individuals are naturally able to suppress replication of the virus. The Elite Controller Collaborative Study (http://www.mgh.harvard.edu/aids/hiv_elite_controllers.asp), the first large-scale haplotype-mapping study in people infected with HIV, is searching for genetic factors that may explain these individuals' unique ability to control the virus without treatment, sometimes as long as 25 years after infection.

"If we could discover how these individuals can coexist with this virus without damage to their immune system and could find a way to replicate that ability in others, we would have a recipe for halting the HIV epidemic," says Bruce Walker, MD, director of Partners AIDS Research Center (PARC) at Massachusetts General Hospital and an initial organizer of the Elite Controller Collaborative Study. Walker discussed the project in a media briefing today at the 16th International AIDS Conference in Toronto.

Most people infected with HIV cannot control replication of the virus with their immune systems alone. Unless antiviral medications are used, the virus continues to reproduce until it overwhelms the CD4 T helper cells, suppressing the immune response and leading to AIDS. In the early 1990s, it was recognized that a small minority of HIV-positive people remained healthy and did not progress to AIDS despite many years of infection. The term "long-term nonprogressors" was used to refer to this group. With today's more sensitive techniques for measuring viral levels in the bloodstream, individuals who are able to maintain low levels of HIV replication can be identified soon after their infection is diagnosed. Some of these viremic controllers can maintain viral loads below 2,000 copies/ml, while an even smaller group, called elite controllers, have viral loads too low to be detected by currently available assays.

"The primary goal of the Elite Controller Collaborative Study is to identify the mechanism that explains control of viral replication in both of these groups, " says Florencia Pereyra, MD, of PARC, lead coordinator of the research team. "We want to use that knowledge to develop a first-generation HIV vaccine, which may not cure or prevent infection but could successfully suppress viral levels. Since this natural ability is so rare, we need to work with collaborators around the world to recruit the number of participants we will need to determine what is going on.

"We expect to need data from at least 1,000 such individuals in order to define the genetic factors associated with this extraordinary outcome," she adds. "This effort will only be possible with the collaboration of HIV researchers, providers, advocacy groups and most important the HIV-infected individuals that fall in this category."

Those eligible to participate in the Elite Controller Collaborative Study are HIV-positive adults, aged 18 to 75, who have maintained viral loads below 2,000 copies without taking HIV antiviral medications. Participation involves having a single blood sample taken, which can be done by participants' local healthcare providers. Those located near a participating research center may choose to be followed over time and provide additional blood samples.

"So far we have enrolled nearly 200 participants from 25 U.S. states, and we are looking forward to adding participants from other countries," says Pereyra. Potential participants or collaborating providers seeking more information should contact Rachel Rosenberg, Partners AIDS Research Center, (617) 726-5536 or rrosenberg2@partners.org.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>