Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapdragons take the evolutionary high-road

18.08.2006
Roses are red, violets are blue, but why aren't snapdragons orange? Norwich scientists from the John Innes Centre (JIC) and the University of East Anglia (UEA) in collaboration with the Université Paul Sabatier (Toulouse, France) have developed a pioneering computer modelling technique that traces the evolutionary paths underlying flower colour variation in the model plant snapdragon (Antirrhinum).Their research, funded by the BBSRC and published today in the journal Science, shows how flower colour diversity has evolved in natural populations of these plants in the Pyrenees.

In the wild, only the plants with the most attractive flower colours are able to reproduce and thrive because the insects that pollinate them prefer certain colours. The bees that pollinate snapdragon find magenta and yellow flowers the most attractive; they do not find colours such as orange attractive and so flowers of this colour would not flourish in the wild due to lack of pollination. Scientists already know that natural colour variation is controlled by three genes: ROSEA and ELUTA affect the intensity and pattern of the magenta pigment anthocyanin and thirdly SULFUREA affects the distribution of the yellow aurone pigment. The researchers in this study wanted to understand how plants producing magenta or yellow flowers could evolve from a common ancestor without producing in-between non-attractive flower colours such as orange.

"This is a totally different way of looking at evolution and could lead to a better understanding of the rules that govern biodiversity" explains Coen, "If we can comprehend how Antirrhinum genes interact in their natural habitat, it may help us in the future to better preserve genetic diversity".

The team led by Enrico Coen (JIC) and Andrew Bangham (UEA) combined molecular, genetic and computational approaches to analyse flower colour variation in natural populations of snapdragon. Using a traditional model, a plot of evolutionary fitness for this study appears to have two peaks: one at the magenta end of the colour spectrum and a second peak at the yellow end, with a trough in the middle representing non-attractive intermediate colours such as orange. As a result, for a plant to evolve from producing magenta flowers to yellow ones it would first have to pass through the trough and produce non-attractive orange flowers before developing yellow ones. However, as Bangham points out, “There are computational methods for understanding and visualising high-dimensional problems that provide new insights”. With these, a more realistic model was created and the researchers discovered that different attributes (phenotypes) that previously appeared as separate peaks in the adaptive landscape, were in fact connected by paths in higher dimensions, forming a U-shaped cloud, with one arm representing magenta connected to the second arm representing yellow. Using this new model, the scientists could trace the evolutionary path that linked these two apparently distinct colour attributes.

"We now understand how these plants can evolve to produce different colours whilst staying attractive to pollinating insects – we've found that colour is variable but constrained to a defined path" states Enrico Coen. But if pollinators prefer certain coloured flowers, why aren't all flowers the same colour? "We still do not know precisely why flower colours should vary in the first place," says Coen, "it could be due to drifting of colours from one to another by accumulation of genetic errors, or alternatively there could be a selective advantage for certain colours in different environments".

The researchers are now applying this new way of modelling evolution to other phenotypes, allowing them to identify how apparently distinct attributes are linked through evolution.

Vicky Just | alfa
Further information:
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>