Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Human DNA on the Fast Track

17.08.2006
Since completing the sequencing of the chimpanzee genome last year, geneticists have spent many hours comparing human DNA sequences to those of our closest evolutionary relative, looking for the differences that distinguish the two species. Now a team of researchers has found the human DNA sequence with the most dramatically increased rate of change.

The function of this region of DNA is still unknown, but it appears to be directly involved in the development of the human brain. “It's very exciting to use evolution to look at regions of our genome that haven't been explored yet,” said Howard Hughes Medical Institute investigator David Haussler, the leader of the team that included scientists from the University of California, Santa Cruz, the University of California, Davis, the University of Brussels, and Université Claude Bernard in France.

Their article will be published in an advance online publication on August 16, 2006, in the journal Nature.

Haussler's group found the DNA region using a technique developed by Katherine Pollard, a former postdoctoral fellow in Haussler's lab who is now an assistant professor at the University of California, Davis. Pollard compared the DNA sequences of chimps, mice, and rats to find the regions that had remained largely unchanged over the 80 million years or so since the common ancestor of those organisms. She then examined the same regions in humans to identify those that had changed markedly in the 6 million years since humans and chimps diverged from a common ancestor.

“Some DNA regions have hardly changed at all over many millions of years in most species,” said Pollard. “My twist was to look for the subset of these regions that have changed just in humans.”

Forty-nine regions, which the team called human accelerated regions (HARs), rose to the top of the list. Surprisingly, only two of these regions code for proteins. The majority of the regions tend to be located near genes that are involved in regulating the function of genes. Furthermore, 12 of the regions are adjacent to genes involved in the development of the brain.

The Nature paper looks in depth at the region that has undergone the most change in the human lineage, which the researchers called HAR1 (for human accelerated region 1). Only two of the region's 118 bases changed in the 310 million years separating the evolutionary lineages of the chicken and the chimp. Incredibly, since the human lineage separated from that of the chimp, 18 of the 118 nucleotides have changed. This region “stood out,” said Pollard.

But what does it do? To find out, Pollard began working with the wet lab, led by Sofie Salama. Haussler established the wet lab following his appointment as an HHMI investigator. After months of work, Salama and her lab mates determined that HAR1 is part of a larger DNA that is transcribed into RNA in the brain.

Then Salama got lucky. Pierre Vanderhaegen, a neuroscientist at the University of Brussels, was visiting Santa Cruz because he knew Salama's husband, who is also a neuroscientist. “I learned that Pierre was setting up to do in-situ hybridizations [at his lab in Brussels] to look at gene expression patterns in human embryonic brain samples,” said Salama. “So I gave him a DNA probe from the HAR1 region and said, `Try this.'”

A few months later Vanderhaegen e-mailed Salama with exciting news. He had discovered that RNA including the HAR1 region is first produced between the 7th and 9th weeks of gestation in human embryos. Furthermore, the RNA was produced by a Cajal-Retzius neuron, a particular type of cell that plays a critical role in creating the six layers of neurons in the human cortex.

Salama then determined that HAR1 actually lies in the region of overlap of two RNA genes that are transcribed in opposite directions along the DNA. Both genes appear to make RNAs that are not translated into proteins. The UC Santa Cruz team showed that these RNAs fold into particular shapes characterized by several helices. The changes to HAR1 during human evolution seem to have altered the length and configuration of some of these helices. “It's a brand new structure, unique,” said Salama. “The downside is that we don't have many good clues as to how it functions.”

Haussler's team is now following up on the clues that they do have. Other DNA regions produce stable RNA structures that have a variety of functions such as gene regulation or controlling the action of proteins. Furthermore, the same cells that express the HAR1 genes also produce a protein called reelin, which helps establish the architecture of the brain.

According to Haussler, the possibility that the HAR1 regions may play a role in the function of reelin is especially interesting since defects in reelin expression have been associated with schizophrenia and other mental disorders. “We still can't say much about the function [of the DNA containing HAR1],” said Haussler, “but it's a very exciting finding because it is expressed in cells that have a fundamental role in the design and development of the mammalian cortex.”

And beyond HAR1 lie HAR2, HAR3, and so on through the 49 regions Pollard identified with her DNA screen. “We've only studied one of these regions carefully,” said Haussler. “Now we have to go through the other 48.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>