Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty spheres loaded with siRNA shrink ovarian cancer tumors in preclinical trial

17.08.2006
Nanoparticles slip through blood vessel pores to attack tumor

A molecular "off" switch packaged in a tiny sphere penetrates deeply into ovarian cancer tumor cells, stifling a troublesome protein and drastically reducing the size of tumors, researchers at The University of Texas M. D. Anderson Cancer Center report in the Aug. 15 edition of Clinical Cancer Research.

The mouse model experiment, featured on the cover of the journal, demonstrates a potent delivery system for short interfering RNA (siRNA) to attack cancer, says senior author Anil Sood, M.D., associate professor in the Departments of Gynecologic Oncology and Cancer Biology at M. D. Anderson.

"Short interfering RNA is a great technology we can use to silence genes, shutting down production of harmful proteins," Sood says. "It works well in the lab, but the question has been how to get it into tumors." Short pieces of RNA don't make it to a tumor without being injected directly, and injection methods used in the lab are not practical for clinical use.

The research team took siRNA that targets a protein that helps ovarian cancer cells survive and spread and rolled it into a liposome -- a lipid ball so small that its dimensions are measured in nanometers (billionths of a meter).

Getting the siRNA inside tumor cells is important, Sood said, because the targeted protein, focal adhesion kinase (FAK), is inside the cell, rather than on the cell surface where most proteins targeted by cancer drugs are found. "Targets like FAK, which are difficult to target with a drug, can be attacked with this liposomal siRNA approach, which penetrates deeply into the tumor," Sood said.

Mice infected with three human ovarian cancer cell lines derived from women with advanced cancer were treated for 3-5 weeks. They received liposomes that contained either the FAK siRNA, a control siRNA, or were empty. Some mice received siRNA liposomes plus the chemotherapy docetaxel.

Mice receiving the FAK-silencing liposome had reductions in mean tumor weight ranging from 44 to 72 percent compared with mice in the control groups. Combining the FAK-silencing liposome with docetaxel boosted tumor weight reduction to the 94-98 percent range.

These results also held up in experiments with ovarian cancer cell lines resistant to docetaxel and to the chemotherapy drug cisplatin.

The FAK-silencing liposome and the liposome with chemotherapy also reduced the incidence of cancer by between 20 and 50 percent in all tested cancer lines.

In addition to its anti-tumor effect, the researchers found that the therapeutic liposome attacked the tumor's blood supply, especially when combined with chemotherapy. By inducing cell suicide (apoptosis) among blood vessel cells, the treatment steeply reduced the number of small blood vessels feeding the tumor, cut the percentage of proliferating tumor cells and increased cell suicide among cancer cells.

Sood and Professor of Molecular Therapeutics Gabriel Lopez-Berestein, M.D., an expert in liposomal therapeutics, cite at least two factors for the success of the anti-FAK liposome.

"This particle is so small, it has no problem getting through the tumor's vasculature and into the tumor," Lopez-Berestein says. The FAK-targeting liposome ranges between 65 and 125 nanometers in diameter. Blood vessels that serve tumors are more porous than normal blood vessels, with pores of 100 to 780 nanometers wide. Normal blood vessel pores are 2 nanometers or less in diameter.

Second, the liposome -- a commercially available version known as DOPC -- has no electrical charge. Its neutrality provides an advantage over positively or negatively charged liposomes when it comes to binding with and penetrating cells.

The next step for the FAK siRNA-DOPC liposome is toxicity testing. "So far it appears to be very well-tolerated," Sood says. "We hope to develop this approach for clinical use in the future."

In addition to ovarian cancer, FAK is overexpressed in colon, breast, thyroid, and head and neck cancers.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>