Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty spheres loaded with siRNA shrink ovarian cancer tumors in preclinical trial

17.08.2006
Nanoparticles slip through blood vessel pores to attack tumor

A molecular "off" switch packaged in a tiny sphere penetrates deeply into ovarian cancer tumor cells, stifling a troublesome protein and drastically reducing the size of tumors, researchers at The University of Texas M. D. Anderson Cancer Center report in the Aug. 15 edition of Clinical Cancer Research.

The mouse model experiment, featured on the cover of the journal, demonstrates a potent delivery system for short interfering RNA (siRNA) to attack cancer, says senior author Anil Sood, M.D., associate professor in the Departments of Gynecologic Oncology and Cancer Biology at M. D. Anderson.

"Short interfering RNA is a great technology we can use to silence genes, shutting down production of harmful proteins," Sood says. "It works well in the lab, but the question has been how to get it into tumors." Short pieces of RNA don't make it to a tumor without being injected directly, and injection methods used in the lab are not practical for clinical use.

The research team took siRNA that targets a protein that helps ovarian cancer cells survive and spread and rolled it into a liposome -- a lipid ball so small that its dimensions are measured in nanometers (billionths of a meter).

Getting the siRNA inside tumor cells is important, Sood said, because the targeted protein, focal adhesion kinase (FAK), is inside the cell, rather than on the cell surface where most proteins targeted by cancer drugs are found. "Targets like FAK, which are difficult to target with a drug, can be attacked with this liposomal siRNA approach, which penetrates deeply into the tumor," Sood said.

Mice infected with three human ovarian cancer cell lines derived from women with advanced cancer were treated for 3-5 weeks. They received liposomes that contained either the FAK siRNA, a control siRNA, or were empty. Some mice received siRNA liposomes plus the chemotherapy docetaxel.

Mice receiving the FAK-silencing liposome had reductions in mean tumor weight ranging from 44 to 72 percent compared with mice in the control groups. Combining the FAK-silencing liposome with docetaxel boosted tumor weight reduction to the 94-98 percent range.

These results also held up in experiments with ovarian cancer cell lines resistant to docetaxel and to the chemotherapy drug cisplatin.

The FAK-silencing liposome and the liposome with chemotherapy also reduced the incidence of cancer by between 20 and 50 percent in all tested cancer lines.

In addition to its anti-tumor effect, the researchers found that the therapeutic liposome attacked the tumor's blood supply, especially when combined with chemotherapy. By inducing cell suicide (apoptosis) among blood vessel cells, the treatment steeply reduced the number of small blood vessels feeding the tumor, cut the percentage of proliferating tumor cells and increased cell suicide among cancer cells.

Sood and Professor of Molecular Therapeutics Gabriel Lopez-Berestein, M.D., an expert in liposomal therapeutics, cite at least two factors for the success of the anti-FAK liposome.

"This particle is so small, it has no problem getting through the tumor's vasculature and into the tumor," Lopez-Berestein says. The FAK-targeting liposome ranges between 65 and 125 nanometers in diameter. Blood vessels that serve tumors are more porous than normal blood vessels, with pores of 100 to 780 nanometers wide. Normal blood vessel pores are 2 nanometers or less in diameter.

Second, the liposome -- a commercially available version known as DOPC -- has no electrical charge. Its neutrality provides an advantage over positively or negatively charged liposomes when it comes to binding with and penetrating cells.

The next step for the FAK siRNA-DOPC liposome is toxicity testing. "So far it appears to be very well-tolerated," Sood says. "We hope to develop this approach for clinical use in the future."

In addition to ovarian cancer, FAK is overexpressed in colon, breast, thyroid, and head and neck cancers.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>