Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria can help predict ocean change

16.08.2006
Marine bacteria groups vary predictably with ocean conditions

Every creature has its place and role in the oceans – even the smallest microbe, according to a new study that may lead to more accurate models of ocean change.

Scientists have long endorsed the concept of a unique biological niche for most animals and plants – a shark, for example, has a different role than a dolphin.

Bacteria instead have been relegated to an also-ran world of "functional redundancy" in which few species are considered unique, said Jed Fuhrman, holder of the McCulloch-Crosby Chair in Marine Biology in the USC College of Letters, Arts and Sciences.

In The Proceedings of the National Academy of Sciences' Early Edition, Fuhrman and colleagues from USC and Columbia University show that most kinds of bacteria are not interchangeable and that each thrives under predictable conditions and at predictable times.

Conversely, the kinds and numbers of bacteria in a sample can show where and when it was taken.

"I could tell you what month it is if you just got me a sample of water from out there," Fuhrman said.

The researchers took monthly bacteria samples for more than four years in the Pacific Ocean near the USC Wrigley Institute's marine laboratory on Catalina Island.

They used statistical methods to correlate the bacteria counts with the Wrigley Institute's monthly measurements of water temperature, salinity, nutrient content, plant matter and other variables.

The researchers found they could predict the makeup of the bacterial population by the conditions in the water more than four times in five.

A majority of bacterial species came and went predictably, Fuhrman said. A smaller "wild card" group in each sample was not predictable and could represent the bacterial equivalent of weeds and other redundant plants.

"Wherever we looked, we found predictable kinds, but within the groups there were always less predictable and more predictable members," Fuhrman said.

"They're just like animals and plants in the way they function in the system. Each one has its own place."

The findings have immediate relevance for scientists attempting to understand how the oceans are changing, Fuhrman said. If bacteria behave predictably, they can be used to improve models for ocean change.

By including bacteria, which make up the vast majority of species on land and sea, "we have some hope of predicting how changes are going to happen," Fuhrman said.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>