Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spineless tales provide strong backbone to human brain research

16.08.2006
Flies, moths and cuttlefish

University of Oregon biologist Nathan Tublitz talked about moths, flies and cephalopods, telling an audience of scientists meeting in Australia this week that research on these spineless creatures is unveiling the mechanics of how the brain regulates behavior.

Among his tales of three invertebrates were details of his discoveries, published in two papers this year, that two specific brain chemicals (glutamate and FMRFamide-related peptides), residing in a specific location, allow a cuttlefish (cephalopod) to change skin color or skin patterns in less than a second. In a paper that appeared online July 25 ahead of regular publication in the journal Integrative and Comparative Biology, Tublitz and colleagues announced that the quick-change machinery resides primarily in the posterior subesophageal mass of the cuttlefish brain.

Color change in cuttlefish skin is caused by pigments in star-shaped cells known as chromatophores. Upon certain inputs, pigment granules spread outward in cells, causing human skin, for instance, to tan or a chameleon's skin to turn between green and brown. However, such changes take hours in humans and minutes in lizards. Cephalopods have some two million chromatophores that are directed by chemical signals originating in a central brain location. They change colors for camouflage or to communicate with like or different species, Tublitz said.

"The region we've identified is similar to the human motor cortex," Tublitz said in his presentation Tuesday morning in Sydney (5 p.m. Monday Pacific Standard Time) at the Association of Pacific Rim Universities' Brain & Mind Research Symposium. "There is a similar mapping of the cuttlefish brain onto the body as in the homunculus of the human motor cortex. Once we understand that similarity, we can start to understand how these cuttlefish brain cells receive different inputs that cause different types of complex body patterns. We want to know how muscles are being activated to generate such complicated behavior."

Such knowledge is important because it provides clues as to how the far more complex human brain acts to alter behaviors, he said. One of the goals of his research at the Institute of Neuroscience at the University of Oregon is to understand the intricacies of brain signaling that allow people, such as athletes, to repeat and adjust tasks they perform repeatedly.

Cephalopods, which also include octopuses and squids, have 100 million nerve cells compared to the 10,000 in insects and the some one trillion in humans. "The idea is to look at simpler brains to allow us to generalize broad concepts that are applicable to humans," Tublitz said in an interview. "Much of what we've learned about the human brain at the cellular level has come from the study of invertebrates," he said.

His findings involving the European cuttlefish (Sepia officinalis) provide an example of system-level brain activity, he said in his presentation. Tublitz also discussed his lab's earlier findings involving cellular plasticity in the tobacco hornworm (Manduca sexta), also known as the hawk moth.

"We have identified a set of nerve cells in the moth whose properties are completely altered during metamorphosis," he said. "The biochemistry is altered. The translators that they use are altered. The shapes of the cells are altered, and their physiology is altered. The dogma is that most cells don't change their characteristics, but here's a case of nerve cells changing not only one characteristic but almost all of them."

The driving force of these changes is naturally occurring steroid hormones, he said.

Insects are fascinating because they accomplish complex behaviors with relatively few nerve cells. Moths, in particular, have easy-to-study nerve cells that are 10 to 20 times as large as those in humans, and they go through three distinct body states, each with its own set of behaviors, with the same brain, "which must adjust and be modified to work in each body state," Tublitz said.

As for flies, Tublitz outlined a tantalizing question, as yet unanswered, that has continued to take flight out of his lab for the last decade. Scientists for years, he said, have held "one hard rule" about what constitutes a neuron – that a neuron cell always arises from the ectoderm of a developing embryo. However, a discovery in Drosophila – fruit flies – has softened that assumption.

Cells arising from the mesoderm rest in a layer on top of the fruit fly's nervous system, Tublitz explained. "These cells have all of the properties of nerve cells." A slide shown during his talk displayed a long list of characteristics most often applied, with only few exceptions, to neurons. "Are these mesodermal cells nerve cells? I can't answer that question conclusively, but we have generated data that suggest the answer may be 'yes'."

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu
http://www.neuro.uoregon.edu/ionmain/htdocs/faculty/tublitz.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>