Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapamycin shown to inhibit angiogenesis

16.08.2006
New findings further support drug's role as cancer treatment

Scientists have long known that the blood vessels of tumors differ markedly from normal blood vessels. Now, a research team led by scientists at Beth Israel Deaconess Medical Center (BIDMC) has identified a signaling pathway which, when activated, transforms otherwise healthy blood vessels into the leaky, misshapen vasculature that characterizes cancerous tumors.

The findings, published in the August 2006 issue of Cancer Cell, additionally demonstrate that rapamycin, a compound used for immunosuppression in transplant patients and currently under investigation as a cancer treatment, can successfully block this signaling pathway--known as the Akt pathway-- in blood vessels. This discovery further enhances the drug's promise as a cancer therapy.

"There are three major hallmarks associated with tumor blood vessels," explains the study's senior author Laura Benjamin, PhD, an investigator in BIDMC's Department of Pathology and Associate Professor of Pathology at Harvard Medical School.

"First, unlike healthy blood vessels which are uniform in structure, a tumor's blood vessels balloon and narrow, forming a highly irregular shape. Second, the layer of smooth muscle that you would expect to find covering the blood vessels is inadequate, often resulting in only intermittent coverage. And last, a tumor's blood vessels are overly permeable or leaky."

The hypothesis that blood vessel formation in tumors is essential for the growth and spread of cancer was first proposed in the early 1970's, and in 1983, it was shown that tumors secrete a factor called VEGF (vascular endothelial growth factor) that induces the permeability associated with blood vessels in cancer.

In this new study, Benjamin and first author Thuy Phung, MD, PhD, of BIDMC's Department of Pathology, hypothesized that the Akt pathway was mediating many of the functions of VEGF in tumors, including the stimulation of blood vessels with abnormal structure and excessive leak. Using a mouse model that enabled them to activate the Akt pathway in healthy blood vessel cells – without the complicating influence of tumor cells – they observed that Akt-induced blood vessels demonstrated the very same abnormalities that are seen in tumor blood vessels. Moreover, adds Benjamin, "We discovered that simply removing the activated Akt was sufficient to reverse these vasculature changes."

The scientists then went on to treat the animals with rapamycin. As predicted, the agent blocked the Akt-induced blood vessel changes. In subsequent experiments, rapamycin reduced tumor growth and vascular leak in a mouse tumor model.

"This paper represents an impressive advance in our understanding of the mechanisms by which tumors generate the new blood vessels they need to survive and grow," says Harold Dvorak, MD, Director of the Vascular Biology Center at BIDMC and Mallinckrodt Professor of Pathology Emeritus at Harvard Medical School, in whose laboratory VEGF was first discovered 23 years ago. "This suggests an attractive new molecular target for cancer therapy."

Approved by the U.S. Food and Drug Administration (FDA) as an immunosuppressant agent, rapamycin is being tested in clinical trials as a cancer treatment.

"These new findings suggest that we should think about using rapamycin in regimens where anti-angiogenic therapy in cancer patients is desired," says Benjamin. "If human tumors respond in the same way that animal models have, rapamycin may normalize and diminish the tumor vasculature, and this is particularly exciting because these findings are clinically relevant today."

In addition to Benjamin and Phung, study coauthors include BIDMC investigators Donnette Dabydeen, BS, Godfred Eyiah-Mensah, BA, Marcela Riveros, MD, Carole Perruzzi, BA, Jingfang Sun, DVM, Rita Monahan-Earley, BA, Janice Nagy, PhD, Ann Dvorak, MD, and Harold F. Dvorak, MD; Keren Ziv, MS, and Michal Neeman, PhD, of the Weizmann Institute of Science in Israel; Ichiro Shiojima, MD, PhD, and Kenneth Walsh, PhD, of Boston University School of Medicine; Michelle Lin, PhD, and William Sessa PhD, of Yale University School of Medicine, New Haven, Connecticut; and David Briscoe, MD, of Children's Hospital, Boston.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>