Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue microenvironment implicated in susceptibility to liver cancer metastases

15.08.2006
A new research study reports that, in addition to the metastatic potential of tumor cells, a permissive target environment plays a critical role in promoting progression and metastases of liver cancer. The findings, which appear in the August issue of Cancer Cell, published by Cell Press, may lead to strategies for identifying and possibly treating patients that are highly likely to develop metastases.

Hepatocellular carcinoma (HCC) is a liver cancer with an extremely poor prognosis because of its propensity to spread and invade surrounding tissues. Dr. Xin Wei Wang from the National Cancer Institute, Bethesda, Maryland, Dr. Zhao-You Tang from Fudan University, Shanghai, China, and colleagues recently identified a gene expression signature for primary HCC tumor cell specimens that could predict the metastatic potential of HCC in patients with 78% accuracy. To better understand the mechanisms underlying HCC metastases, the researchers went on to examine whether the metastatic propensity of HCC might also be influenced by the microenvironment of the local tissue.

A thorough examination of noncancerous hepatic tissues from two groups of HCC patients, those with and those without detectable metastases, revealed profound differences in gene expression profiles. Specifically, a unique 17 gene expression signature involving genes associated with inflammation and the immune system was identified in patients with the metastatic phenotype. These patients exhibited a global decrease in gene products associated with inflammation and an increase in anti-inflammatory gene products. Importantly, the genetic signature described in this study provided greater than 92% accuracy in predicting metastases, a result that far exceeds the accuracy of the previously described profile based on primary HCC cells.

The researchers also found that the colony-stimulating factor 1 (CSF1) is playing a prominent role in metastasis of liver cancer cells. "The CSF1 may be reprogramming the immune cells to switch from secreting cytokines that create a pro-inflammatory microenvironment to one that is anti-inflammatory--a condition that supports the growth and metastases of liver tumor cells," explains Dr. Wang.

The findings suggest that, in addition to the metastatic potential of the tumor cells themselves, the inflammatory status of the tissues surrounding the tumor cells may play a key role in tumor metastases and progression. "The genetic signature identified in this study is a superior predictive tool to determine HCC metastases and relapse and may have possible utility in clinical settings to identify HCC patients who might benefit from certain postsurgical treatment to prevent metastases and/or recurrence," said Dr. Wang.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>