Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the going gets tough, slime molds start synthesizing

15.08.2006
In times of plenty, the uni-cellular slime mold Dictyostelium discoideum leads a solitary life munching on bacteria littering the forest floor. But these simple creatures can perform heroic developmental acts: when the bacterial food supply dries up, Dictyostelium amebas band together with their neighbors and form a multi-cellular tower designed to save the children.

In a forthcoming study in Nature Chemical Biology, investigators at the Salk Institute for Biological Studies and the Medical Research Council of Molecular Biology (MRC) in Cambridge, England, use traditional and computer-based methods to show how Dictyostelium synthesizes the chemical signal called DIF-1, short for Differentiation Inducing Factor, required for this developmental transformation.

The collaboration, explains co-senior author Joe Noel, Ph.D, a Howard Hughes Medical Institute investigator at Salk, "shows the power of a combined approach involving bioinformatics, enzymology, structural biology and genetics to get at the heart of why organisms exploit natural chemicals to survive and prosper in challenging ecosystems."

When slime molds starve, they collectively form a multicellular slug-like creature that locomotes en masse to a warm spot. There, in response to the DIF-1 signal, slugs literally stand up and their cells metamorphose into either a column of stalk cells or next-generation spore cells, which perch atop the column waiting for food supplies to be restored.

Noel and Michael Austin, Ph.D., a postdoctoral fellow in Noel's lab and co-lead author of the study, have an ongoing interest in the biosynthesis of diverse plant and microbial polyketides by enzymes known as type III PKSs. Plants make polyketide natural products such as flavonoids and stilbenes for use as sunscreens, antibiotics, flower pigments, and anti-oxidants. Explains Austin, "Plant polyketides are also increasingly recognized to have significant benefits in the human diet as health-promoting components of green tea, red wine, and soybeans."

Turns out, DIF-1 belongs to the same crowd. "While reading a review article on the diversity of polyketides in the journal Nature, we realized that the core chemical structure of DIF-1, an important developmental signal in Dictyostelium, is similar to natural products made by plant type III PKSs," recalls Austin.

At the time, Dictyostelium was in the midst of having its genome sequenced, and the bits and pieces of raw DNA sequencing data were being deposited in publicly available databases. Austin recalled, "One night I performed a bioinformatics search to look for genetic evidence that would suggest the existence of a type III PKS in Dictyostelium." Using various computer programs to find, assemble, and translate in silico the relevant raw DNA sequencing fragments first into genes then into the proteins these genes encode, Austin reconstructed two type III PKS-like gene sequences, and also found a surprise.

Unexpectedly, these deduced genetic blueprints for type III PKSs revealed each Dictyostelium type III PKS to be fused to other enzymatically active protein domains. This never seen before hybrid arrangement works like a very efficient bucket brigade that synthesizes polyketide molecules in slime mold cells.

"Nature has paved the way to exploit this novel domain arrangement to bioengineer more efficient ways of making modified polyketides for human uses," said Austin.

Moving to the bench, Austin and Noel lab manager Marianne Bowman isolated Dictyostelium DNA encoding the type III PKS domains and not only determined their structure, which indeed resembled a plant PKS, but also showed that one of them, called Steely2, made the chemical scaffold of DIF-1 in a test tube. All that was left was to prove was that slime molds themselves used the newly discovered enzyme to make DIF-1.

For that Noel and Austin turned to co-senior author Robert Kay, Ph.D., a Dictyostelium cellular differentiation expert and groupleader at the MRC. "We wrote a paper and sent a version to Rob Kay and said, 'You don't know us, but here's what we do. Biochemically we have identified the machinery that makes the essential precursor for the bioactive DIF-1 molecule.' "

Kay replied that he and co-lead author Tamao Saito, PhD., a scientist on sabbatical in his lab, had also focused on these unusual type III PKS genes following the recently completed final assembly and annotation of the entire Dictyostelium genome, which was carried out by a worldwide collaboration of many scientists, including the Kay group.

Working independently, Saito and Kay had deleted the Dictyostelium gene for Steely2. Not only could the resulting "deficient" slime molds not make DIF-1 but they couldn't construct the rescue tower, which was exactly the biological corroboration that the Noel lab wanted to hear. The two labs pooled data and now publish their work as one, very complete story while continuing to collaborate on the chemical diversity found in this fascinating organism that crawls around on the forest floor.

Says Noel, who is a professor in the Jack H. Skirball Center for Chemical Biology and Proteomics at Salk, "This is a wonderful example of where egos get pushed aside about who did what and instead, as a scientific community, groups come together to address a fundamental question in biology. In the process, we collectively discovered an efficient chemical factory in Dicytostelium cells that informs us about how to modify similar systems used in other organisms to produce important medicines from nature."

For Noel the problem is to understand biocomplexity at a level traditionally ignored - the plethora of natural chemicals found throughout nature. Organisms use chemicals as a means of interacting with their surroundings and mankind has exploited this fact to discover the vast majority of pharmaceuticals used to treat disease today. "The major fundamental question in our case is why do organisms make chemicals, what role do these molecules play in nature and how does the cellular machinery used to make them evolve over millions of years to provide new ways for the host organisms to survive and prosper. Understanding the diversity of natural chemicals and the machinery that produces them gives us a window to look back in time and understand how organisms evolve at the molecular level."

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>