Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Sticky' mice lead to discovery of new cause of neurodegenerative disease

15.08.2006
When a faulty protein wreaks havoc in cells and causes disease, researchers are usually quick to point the finger at a wayward gene. Now scientists are learning that some neurodegenerative diseases can develop even though a gene is perfectly normal. The diseases can be caused when the genetic instructions contained in the gene are not executed properly, leading to a lethal buildup of malformed proteins in brain cells.

The new studies by Howard Hughes Medical Institute (HHMI) investigator Susan L. Ackerman and colleagues at The Jackson Laboratory point to a novel mechanism behind the buildup of the toxic sludge that accumulates in neurons. Researchers have long known that neurodegenerative disorders can be caused by the gradual yet persistent accumulation of misfolded proteins in neurons that eventually triggers cell death. But this new mechanism points to errors in executing the genetic instructions, which are distinct from known causes of neurodegenerative diseases, such as Alzheimer's and Huntington's diseases.

HHMI investigator Susan L. Ackerman and her colleagues reported their findings in an August 13, 2006, advance online publication of the journal Nature. Ackerman's group collaborated on the studies with co-author Paul Schimmel at The Scripps Research Institute.

The researchers made their discovery by studying mice with a mutation called sticky (sti). Although named for the sticky appearance of their fur, the mice harbor much more serious problems beneath their unkempt coats: poor muscle control, or ataxia, due to death of Purkinje cells in a region of the brain called the cerebellum.

No one knew why Purkinje cells were dying in sticky mutant mice. To find out, Ackerman and her colleagues searched for the gene that was disrupted by the sti mutation. They were surprised to find a subtle defect in a gene that codes for part of the cell's protein synthesis machinery -- an enzyme called alanyl tRNA synthetase. This enzyme is responsible for loading, or "charging" the amino acid alanine onto transfer RNAs (tRNAs). Transfer RNAs transport individual amino acids to the cell's protein synthesis machinery, where they are added to the growing stringlike protein molecules being manufactured there. Each tRNA is designed to carry only one of the 20 amino acids used to build proteins, and accurate loading is critical for the resulting protein to have the correct structure.

Ackerman said that when the team began its studies, it did not expect that such a fundamental defect in protein synthesis could be behind the neurodegeneration they had observed in sticky mice. "There were a lot of candidate genes in the chromosomal region containing the sti mutation," she said, "and this gene was actually the last candidate gene we investigated. It seemed to us that a mutation in a gene so fundamentally important for protein translation would cause early lethality. But when we couldn't find a defect in any of the other genes in the sti region, we decided to look closer at the tRNA synthetase gene. And there it was."

To set aside any doubts they might have had about the role of the tRNA synthetase gene, Ackerman and her colleagues showed that they could correct the pathology in the sticky mouse mutants by using genetic techniques to insert a normal version of the tRNA synthetase gene.

To understand the specific defect in the tRNA synthetase gene, Ackerman and her colleagues collaborated with Schimmel, whose research has concentrated on the biochemistry of synthetases. Molecular studies by Schimmel and his colleagues revealed that the defect in the sti mutant mouse occurred in a region of the synthetase enzyme that "edits" the loading of the correct amino acid, alanine, onto its carrier tRNA. This editing enables the enzyme to reject incorrect amino acids.

The researchers found that the mutant enzyme would charge an incorrect amino acid, serine, which resembles alanine, to tRNAs meant to carry only alanine. That meant that these tRNAs, said to be mischarged, would incorporate the incorrect amino acid into proteins. Although proteins begin as long strings of amino acids, they are ultimately folded into intricate three-dimensional shapes in order to function properly. Malformed proteins resulting from serine substitution could fold improperly, clogging and eventually killing cells.

When Ackerman and her colleagues examined the Purkinje cells of sticky mouse mutants, this is exactly what they saw. They also detected biochemical evidence that the cells were making an unsuccessful effort to tag and destroy the accumulating misfolded proteins.

"Our finding that this mechanism underlies a neurodegenerative disease was highly unexpected," said Ackerman. "It was perfectly obvious that mischarged tRNAs, may generate misfolded proteins. But what surprised us was that such a small increase in mischarged tRNAs could have such a devastating result in terms of neuronal survival. Nobody I know of has put forth such a mechanism for human neurological disease."

Ackerman speculates that human disease could arise when a mild inherited defect in a tRNA synthetase led to a subtle increase in malformed proteins, which could cause the death of particularly vulnerable cells such as Purkinje cells. "This mouse model shows that such a mechanism is possible," she said. "The sticky mouse has a mild editing defect that still allows it to produce offspring.

"So, a major question to be explored in human populations is whether the subtle loss of translational fidelity from such a defect could lead to various human diseases – particularly those that involve the accumulation of misfolded proteins," she said.

Ackerman and her colleagues are conducting further studies to understand why Purkinje cells are particularly vulnerable to defects in protein synthesis. They are also exploring how the actions of other genes in the cell can alleviate the pathology caused by protein misfolding.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>