Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental RNA-Based Drug Kills Prostate Cancer Cells Effectively and Safely

14.08.2006
Acting as a genetic Trojan horse, an experimental RNA-based drug -- the first of its kind -- tricks its way into prostate cancer cells and then springs into action to destroy them, while leaving normal cells unharmed.

The drug, developed at Duke University Medical Center, uses one type of genetic material, called targeting RNA, to enter cancer cells, and another type, called silencing RNA, to stop the expression of a protein that keeps the cells alive.

In tests in mice with prostate cancer, the drug shrank the size of their tumors by half, while the tumors in control mice that did not receive the drug continued to grow, said study co-author Bruce Sullenger, Ph.D., director of Duke's Translational Research Institute and chief of the Division of Experimental Surgery.

The mice showed no side effects from the treatment, Sullenger said.

"This study represents the first step in creating an RNA-based drug for cancer," said lead author James McNamara, Ph.D. a postdoctoral fellow in experimental surgery. "It provides a 'proof of principle' that an entirely RNA-based drug can work with minimal side effects, and it shows it is possible to overcome many of the obstacles that have hampered the development of RNA-based drugs."

The study is reported in the August 2006 issue of Nature Biotechnology, which is now available online. The research was funded by the National Institutes of Health.

Duke has filed a provisional patent application on the technology, according to the researchers.

"Scientists have made numerous attempts to transform silencing RNAs into natural anticancer agents, but such development has been challenging," said Paloma Giangrande, Ph.D., co-leader of the study and an assistant research professor in experimental surgery.

Scientists have encountered major obstacles when trying to deliver silencing RNAs to tumors, Giangrande said. Previous RNA-based drugs have been nonspecific, targeting all cells in the body and not just cancer cells. As a result, they have caused unwanted side effects.

The Duke team set out to produce a drug that would target only cancer cells. To accomplish this goal, the researchers designed a drug that combines two RNA "modules" that work in stages. One module contains targeting RNA, which attaches to a protein, PMSA, found only on the surface of prostate cancer cells. When that module binds to a cancer cell, the cell reacts by engulfing the entire drug molecule.

With the drug now inside the cancer cell, the second module, which contains silencing RNA, launches its effect. The silencing RNA seeks out and binds to the RNA for a specific cancer-causing protein, called PLK1, and tags it for destruction. This eventually leads to the death of the cancer cell.

The researchers first tested the drug in culture dishes containing cancer cells. They found that the drug effectively bound to prostate cancer cells, entered them and shut off production of the target protein, PLK1.

The researchers then moved into mouse experiments. They injected the drug directly into the mice's prostate tumors, administering one injection every two days, for a total of 10 injections over 20 days. By the end of the study, the tumors in the 10 treated mice had shrunk two-fold in volume, while the tumors in the 10 control animals had more than tripled in size.

"The animals themselves showed no signs of side effects," Giangrande said.

The scientists caution that much work remains to move the experimental drug into clinical use in humans. Among the next steps, Sullenger said, is to demonstrate conclusively that the drug can be delivered into the blood stream and still reach the tumor target without being destroyed by the body or causing adverse side effects.

Other Duke researchers involved in the study include Eran Andrechek, Yong Wang, Kristi Viles, Rachel Rempel and Eli Gilboa.

Marla Vacek Broadfoot | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>