Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory scientists develop new map of genetic variation in human genome

14.08.2006
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences

Emory University scientists have identified and created a map of more than 400,000 insertions and deletions (INDELs) in the human genome that signal a little-explored type of genetic difference among individuals. INDELS are an alternative form of natural genetic variation that differs from the much-studied single nucleotide polymorphisms (SNPs). Both types of variation are likely to have a major impact on humans, including their health and susceptibility to disease.

The INDEL research, led by Scott Devine, PhD, assistant professor of biochemistry at Emory University School of Medicine, has been posted online and will be published in the September issue of the journal Genome Research.

The human genome sequence in our DNA contains three billion base pairs of four chemical building blocks Ð adenine, thymine, cytosine, and guanine (A, T, C, G), strung together in different combinations in long chains within 23 pairs of chromosomes. When the first human genome was being sequenced, it became apparent that additional human genomes would have to be sequenced to identify the places in the genetic code that account for human variation. Scientists now know that humans share about 97-99 percent of the genetic code, and the remaining 1-3 percent dictates individual differences. These naturally occurring differences, called polymorphisms, help explain differences in appearance, susceptibility to diseases, and responses to the environment.

SNPs are differences in single chemical bases in the genome sequence, and INDELs result from the insertion and deletion of small pieces of DNA of varying sizes and types. If the human genome is viewed as a genetic instruction book, then SNPs are analogous to single letter changes in the book, whereas INDELs are equivalent to inserting and deleting words or paragraphs.

Most polymorphism discovery projects have focused on SNPs, resulting in the International HapMap Project Ð a catalog and map of more than 10 million SNPs derived from diverse individuals throughout the globe. Dr. Devine and postdoctoral researcher Ryan Mills, PhD, focused instead on INDELs, using a computational approach to examine DNA re-sequences that originally were generated for SNP discovery projects. Thus far they have identified and mapped 415,436 unique INDELs, but they expect to expand the map to between 1 and 2 million by continuing their efforts with additional human sequences.

Dr. Devine says INDELs can be grouped into five major categories, depending on their effect on the genome: (1) insertions or deletions of single base pairs; (2) expansions by only one base pair (monomeric base pair expansions); (3) multi-base pair expansions of 2 to 15 repeats; (4) transposon insertions (insertions of mobile elements); (5) and random DNA sequence insertions or deletions. INDELs already are known to cause human diseases. For example, cystic fibrosis is frequently caused by a three-base-pair deletion in the CFTR gene, and DNA insertions called triplet repeat expansions are implicated in fragile X syndrome and Huntington's disease. Transposon insertions have been identified in hemophilia, muscular dystrophy and cancer.

"Were entering an exciting new era of predictive health where an individuals personal genetic code will provide guidance on healthcare decisions says Dr. Devine. "Our maps of insertions and deletions will be used together with SNP maps to create one big unified map of variation that can identify specific patterns of genetic variation to help us predict the future health of an individual. The next phase of this work is to figure out which changes correspond to changes in human health and develop personalized health treatments. This could include specific drugs tailored to each individual, given their specific genetic code.

Ultimately, each person's genome could be re-sequenced in a doctor's office and his or her genetic code analyzed to make predictions about their future health. Dr. Devine believes the technology holds the promise of predicting whether a person will develop diabetes, mental disorders, cancer, heart disease and a range of other conditions.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>