Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational analysis shows that plant hormones often go it alone

14.08.2006
Unlike the Three Musketeers who lived by the motto "All for one, one for all," plant hormones prefer to do their own thing. For years, debate swirled around whether pathways activated by growth-regulating plant hormones converge on a central growth regulatory module. Now, the cooperation model is challenged by researchers at the Salk Institute for Biological Studies. They show that each hormone acts largely independently in the Aug. 11 issue of Cell.

The Salk team found that specific plant hormones often activate different factors rather than a common target. "This result was completely unexpected because hormones with similar effects on plant growth seem to act on different gene sets," says the study's lead author Joanne Chory, Ph.D., a professor in the Plant Biology Laboratory and investigator with the Howard Hughes Medical Institute.

Plants rely on hormones, which act as chemical messengers to regulate every aspect of their biology. Growth, for example, is stimulated by multiple hormones -- brassinosteroids, auxins and gibberellins among them. The fact that these and several other hormones stimulate plant growth suggested to some investigators that eventually they all switch on the same growth-promoting genes.

To test that idea, the Chory team poured over data derived from the new gene-chip technology, in which samples of almost every gene expressed in a cell are spotted onto a tiny glass slide known as a microarray and analyzed under different physiological conditions. Although the analysis sounds complex, it answers a simple question: After stimulation with seven different growth hormones, are the same or different genes activated?

The teamwork model would predict yes, but Chory's team found otherwise. Co-lead authors Jennifer L. Nemhauser, Ph.D., a former postdoctoral fellow in Chory's lab and now assistant professor at the University of Washington in Seattle, and Fangxin Hong, Ph.D., a biostatistician in Chory's lab, found that each of the seven hormones activated largely its own repertoire of target genes. "We found shockingly little overlap," Nemhauser reports.

The microarray data used by Chory's team were collected as part of a multinational effort known as the AtGenExpress project cataloguing gene expression in the model plant Arabidopsis thaliana, which has become the lab mouse of the plant world. The laboratory of Detlef Weigel, Ph.D., an adjunct professor in the Laboratory for Plant Biology at the Salk and a professor at the Max Plank Institute for Developmental Biology in Tübingen, Germany, is one of the most prolific providers of micro-array data for Arabidopsis.

Participants in the project send results from their lab's microarray analysis of Arabidopsis genes to a publicly available database, where data is shared by colleagues investigating diverse biological questions. "The data was there but nobody had compared the effects of different growth hormones on gene expression side by side," says Nemhauser.

The amount of data analyzed by the Chory group was enormous. The activity of about 22,000 genes, each detected by on average 15 detectors after treatment with the seven hormones, was crunched--not once--but twice, resulting in roughly 14 million data points. "Since we didn't generate any of the data ourselves, we had to perform extensive quality controls to extract meaningful information," explains Hong.

The Salk researchers' analysis revealed that surprisingly few genes were switched on by multiple hormones. And when more than one hormone did initiate a similar program, such as activating genes encoding proteins called "expansins" that loosen plant cell walls to allow for growth, the investigators found that they mobilized different members of the expansin gene family.

"The data analysis showed that there is likely a complex set of interactions between the levels of hormones," explains Chory, "which suggests that long-term effects of all hormone treatments represent a 'domino effect' that resets many systems within the plant."

Combining traditional biological approaches with computational analysis will move plant biologists closer to answering the age-old question of how plants grow, the Salk researchers predict. "Microarrays are very useful for those of us studying physiology and development. They can reveal new interactions, or lack thereof, between biological processes and identify candidates for direct targets of transcription factors controlling development," says Chory.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>