Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research points toward mechanism of age-onset toxicity of Alzheimer's protein

14.08.2006
Like most neurodegenerative diseases, Alzheimer's disease usually appears late in life, raising the question of whether it is a disastrous consequence of aging or if the toxic protein aggregates that cause the disease simply take a long time to form.

Now, a collaboration between researchers at the Salk Institute for Biological Studies and the Scripps Research Institute shows that aging is what's critical. Harmful beta amyloid aggregates accumulate when aging impedes two molecular clean-up crews from getting rid of these toxic species.

This finding opens the door for development of drugs preventing build-up of toxic protein aggregates in the brain. The study appears in the Aug. 10 issue of Science Express, the advanced online edition of the journal Science.

"Aging is the most important risk factor for neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease," says senior author Andrew Dillin, Ph.D., an assistant professor in the Salk Molecular and Cell Biology Laboratory. "Our study revealed that the age onset of these diseases is not simply a matter of time but that the aging process plays an active role in controlling the onset of toxicity," he explains.

Beta amyloid production occurs in all brains, but healthy cells clear away excess amounts. Brains of people with Alzheimer's disease, on the other hand, are unable to control beta amyloid accumulation. For years, scientists have scrambled to find out why.

To answer this vexing question, Dillin analyzed protein aggregation in the roundworm, a streamlined organism that, like mammals, uses the insulin/IGF-1 pathway to control lifespan but can be rapidly manipulated genetically. Dillin used roundworms that produce human beta amyloid peptide in body wall muscles. As the worms aged, the protein formed toxic aggregates causing paralysis.

Then researchers experimentally decelerated aging in engineered worms by lowering activity of the insulin/IGF-1 pathway and asked whether it was simply the passage of time--not aging per se--that favored protein aggregation. It wasn't: chronologically "old" worms crawled around happily, while counterparts whose insulin/IGF-1 pathway was normal could only helplessly wriggle their heads.

However, close inspection of the data revealed a surprise: "Worms with reduced insulin signaling seemed perfectly fine although they had high molecular weight aggregates, while worms with an accelerated aging program were extremely sensitive to the toxic effects of beta amyloid but we couldn't detect any large fibrils," explains postdoctoral researcher and co-lead author Ehud Cohen, Ph.D.

Intrigued, Dillin turned to an expert on beta amyloid biochemistry, Jeffery Kelly, Ph.D., a professor of chemistry at Scripps and a member of its Skaggs Institute of Chemical Biology.

Together they found that cells use an unexpected two-pronged strategy to rid themselves of harmful aggregates. Kelly explains, "One pathway disaggregated beta amyloid fibrils, while the other actively packed them into high molecular weight aggregates. But the latter only kicks in when the cell is left with no other options."

The surprise was that very high molecular weight species were actually less toxic than smaller aggregates. "For a long time large protein aggregates were considered the toxic species," explains Cohen. "The fact that cells protect themselves by temporarily storing small fibrils as high molecular weight aggregates marks a clear paradigm shift."

Two proteins controlled by insulin/IGF-1 signaling orchestrate detoxification--HSF-1, which takes care of aggregate break-down, and DAF-16, which mediates formation of safer, super-sized aggregates as debris accumulates. "We assumed that DAF-16 and HSF-1 would do the same job, but they don't. This is extremely exciting because it gives us two unique opportunities to attenuate beta amyloid-mediated toxicity by manipulating the activity of these factors," says Dillin.

New model for neurodegenerative diseases

Half of all people who reach age 85 will likely be affected by Alzheimer's disease, and the onset age – usually around 75 – is almost the same for all sporadic neurodegenerative aggregation diseases. Thus, Salk researchers have developed a model that explains why these disorders diseases occur late in life.

Throughout life, brain cells produce aggregation-prone beta-amyloid fragments that must be cleared. "This process is very efficient when we are young but as we get older it gets progressively less efficient," says Cohen. As the affected individual reaches the seventh decade of life the clearance machineries fail to degrade the continually forming toxic aggregates and the disease emerges. In individuals who carry early onset Alzheimer's-linked mutation, an increased "aggregation challenge" leads to clearance failure and the emergence of Alzheimer's much earlier – usually during their fifth decade.

"It was very satisfying when the biochemical data from Jeffery's lab and genetic results from our lab came together," recalls Dillin. Both scientists are continuing the collaboration by searching for small molecules that delay the aging program and boost protective mechanisms.

Other contributing authors were co-lead author Jan Bieschke, Ph.D., formerly at Scripps and now at Max Delbrueck Center in Berlin, and research assistant Rhonda M. Perciavalle.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>