Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defense peptide found in primates may block some human HIV transmissions

11.08.2006
University of Central Florida researchers believe protein can effectively block HIV-1 virus from entering and infecting blood cells

As primates evolved 7 million years ago, the more advanced species stopped making a protein that University of Central Florida researchers believe can effectively block the HIV-1 virus from entering and infecting blood cells.

HIV-1 often mutates quickly to overcome antiviral compounds designed to prevent infections. But a research team led by Associate Professor Alexander Cole of UCF's Burnett College of Biomedical Sciences has demonstrated that over 100 days the virus develops only weak resistance to retrocyclin, a defense peptide still found in monkeys and lower primates.

If additional laboratory tests demonstrate only weak resistance, Cole will study how retrocyclin could be developed into a drug designed to prevent the HIV virus from entering human cells.

Cole is also working with Henry Daniell, a UCF professor of molecular biology and microbiology, to develop a way to grow retrocyclin through genetically engineered tobacco plants. The retrocyclin gene would be incorporated into the chloroplast genome of tobacco cells before the plants grow. Daniell has developed a similar approach to growing anthrax vaccine in tobacco plants.

An inexpensive way to produce the drug with only a small amount of tobacco would help to make it accessible in areas such as Southeast Asia, Africa and the Caribbean where the disease spreads most quickly.

"If we could develop retrocyclin in plants and produce enough of the drug cheaply, we could potentially save a lot of lives," Cole said.

Cole was recently awarded about $4 million of National Institutes of Health grants through 2011 for the HIV-1 research and similar studies. The grants were provided through the National Institute of Allergy and Infectious Diseases; National Institute of Child Health and Human Development; and the National Heart, Lung and Blood Institute.

Cole started his research into theta-defensins at the University of California, Los Angeles, before he moved to UCF in 2003. Drs. Otto Yang and Robert Lehrer, infectious disease specialists at UCLA, and researchers at the University of Pittsburgh and Emory University are collaborating with Cole.

There are three classes of defensin peptides, and most research around the world has focused on alpha and beta defensins, the two types that humans still make. Cole studies theta-defensins called retrocyclins, which are no longer made by humans or advanced primates such as chimpanzees. However, theta-defensins are more active against HIV-1 than the other two types of defensins and can be developed in laboratories, two features that suggest retrocyclins still could become an effective way to fight the virus.

HIV-1 is the most common form of the human immunodeficiency virus that causes AIDS. The disease is often transmitted sexually, and the drugs produced from Cole's research would be applied to the vagina in the form of a gel or cream. Many of the laboratory tests have shown that retrocyclin can prevent HIV-1 infection of human vaginal tissue.

Retrocyclin was still an effective inhibitor of HIV-1 even after 100 days of continuous exposure to human cells in a laboratory setting. Cole and his team are encouraged that only minimal resistance of the virus occurred during that time. Higher resistance levels make it more difficult to develop drugs to fight the virus because doses must be increased substantially over time.

The exact reason why resistance does not develop quickly with retrocyclin is unclear, but it may be a result of retrocyclin interacting with more than one target on both the cell and virus. Viruses that have to defeat more than one antiviral mechanism often develop resistance at a much slower pace.

The next phase of Cole's research will delve more into the mutations that HIV-1 can take in an effort to minimize them as much as possible. Many series of laboratory tests would need to be completed before clinical trials could begin no earlier than 2009.

Cole's findings were published in the June 1 issue of The Journal of Immunology, a top journal in the fields of immunology, molecular biology and microbiology.

Tom Evelyn | EurekAlert!
Further information:
http://www.ucf.edu
http://www.AIDS2006.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>