Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defense peptide found in primates may block some human HIV transmissions

11.08.2006
University of Central Florida researchers believe protein can effectively block HIV-1 virus from entering and infecting blood cells

As primates evolved 7 million years ago, the more advanced species stopped making a protein that University of Central Florida researchers believe can effectively block the HIV-1 virus from entering and infecting blood cells.

HIV-1 often mutates quickly to overcome antiviral compounds designed to prevent infections. But a research team led by Associate Professor Alexander Cole of UCF's Burnett College of Biomedical Sciences has demonstrated that over 100 days the virus develops only weak resistance to retrocyclin, a defense peptide still found in monkeys and lower primates.

If additional laboratory tests demonstrate only weak resistance, Cole will study how retrocyclin could be developed into a drug designed to prevent the HIV virus from entering human cells.

Cole is also working with Henry Daniell, a UCF professor of molecular biology and microbiology, to develop a way to grow retrocyclin through genetically engineered tobacco plants. The retrocyclin gene would be incorporated into the chloroplast genome of tobacco cells before the plants grow. Daniell has developed a similar approach to growing anthrax vaccine in tobacco plants.

An inexpensive way to produce the drug with only a small amount of tobacco would help to make it accessible in areas such as Southeast Asia, Africa and the Caribbean where the disease spreads most quickly.

"If we could develop retrocyclin in plants and produce enough of the drug cheaply, we could potentially save a lot of lives," Cole said.

Cole was recently awarded about $4 million of National Institutes of Health grants through 2011 for the HIV-1 research and similar studies. The grants were provided through the National Institute of Allergy and Infectious Diseases; National Institute of Child Health and Human Development; and the National Heart, Lung and Blood Institute.

Cole started his research into theta-defensins at the University of California, Los Angeles, before he moved to UCF in 2003. Drs. Otto Yang and Robert Lehrer, infectious disease specialists at UCLA, and researchers at the University of Pittsburgh and Emory University are collaborating with Cole.

There are three classes of defensin peptides, and most research around the world has focused on alpha and beta defensins, the two types that humans still make. Cole studies theta-defensins called retrocyclins, which are no longer made by humans or advanced primates such as chimpanzees. However, theta-defensins are more active against HIV-1 than the other two types of defensins and can be developed in laboratories, two features that suggest retrocyclins still could become an effective way to fight the virus.

HIV-1 is the most common form of the human immunodeficiency virus that causes AIDS. The disease is often transmitted sexually, and the drugs produced from Cole's research would be applied to the vagina in the form of a gel or cream. Many of the laboratory tests have shown that retrocyclin can prevent HIV-1 infection of human vaginal tissue.

Retrocyclin was still an effective inhibitor of HIV-1 even after 100 days of continuous exposure to human cells in a laboratory setting. Cole and his team are encouraged that only minimal resistance of the virus occurred during that time. Higher resistance levels make it more difficult to develop drugs to fight the virus because doses must be increased substantially over time.

The exact reason why resistance does not develop quickly with retrocyclin is unclear, but it may be a result of retrocyclin interacting with more than one target on both the cell and virus. Viruses that have to defeat more than one antiviral mechanism often develop resistance at a much slower pace.

The next phase of Cole's research will delve more into the mutations that HIV-1 can take in an effort to minimize them as much as possible. Many series of laboratory tests would need to be completed before clinical trials could begin no earlier than 2009.

Cole's findings were published in the June 1 issue of The Journal of Immunology, a top journal in the fields of immunology, molecular biology and microbiology.

Tom Evelyn | EurekAlert!
Further information:
http://www.ucf.edu
http://www.AIDS2006.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>