Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defense peptide found in primates may block some human HIV transmissions

11.08.2006
University of Central Florida researchers believe protein can effectively block HIV-1 virus from entering and infecting blood cells

As primates evolved 7 million years ago, the more advanced species stopped making a protein that University of Central Florida researchers believe can effectively block the HIV-1 virus from entering and infecting blood cells.

HIV-1 often mutates quickly to overcome antiviral compounds designed to prevent infections. But a research team led by Associate Professor Alexander Cole of UCF's Burnett College of Biomedical Sciences has demonstrated that over 100 days the virus develops only weak resistance to retrocyclin, a defense peptide still found in monkeys and lower primates.

If additional laboratory tests demonstrate only weak resistance, Cole will study how retrocyclin could be developed into a drug designed to prevent the HIV virus from entering human cells.

Cole is also working with Henry Daniell, a UCF professor of molecular biology and microbiology, to develop a way to grow retrocyclin through genetically engineered tobacco plants. The retrocyclin gene would be incorporated into the chloroplast genome of tobacco cells before the plants grow. Daniell has developed a similar approach to growing anthrax vaccine in tobacco plants.

An inexpensive way to produce the drug with only a small amount of tobacco would help to make it accessible in areas such as Southeast Asia, Africa and the Caribbean where the disease spreads most quickly.

"If we could develop retrocyclin in plants and produce enough of the drug cheaply, we could potentially save a lot of lives," Cole said.

Cole was recently awarded about $4 million of National Institutes of Health grants through 2011 for the HIV-1 research and similar studies. The grants were provided through the National Institute of Allergy and Infectious Diseases; National Institute of Child Health and Human Development; and the National Heart, Lung and Blood Institute.

Cole started his research into theta-defensins at the University of California, Los Angeles, before he moved to UCF in 2003. Drs. Otto Yang and Robert Lehrer, infectious disease specialists at UCLA, and researchers at the University of Pittsburgh and Emory University are collaborating with Cole.

There are three classes of defensin peptides, and most research around the world has focused on alpha and beta defensins, the two types that humans still make. Cole studies theta-defensins called retrocyclins, which are no longer made by humans or advanced primates such as chimpanzees. However, theta-defensins are more active against HIV-1 than the other two types of defensins and can be developed in laboratories, two features that suggest retrocyclins still could become an effective way to fight the virus.

HIV-1 is the most common form of the human immunodeficiency virus that causes AIDS. The disease is often transmitted sexually, and the drugs produced from Cole's research would be applied to the vagina in the form of a gel or cream. Many of the laboratory tests have shown that retrocyclin can prevent HIV-1 infection of human vaginal tissue.

Retrocyclin was still an effective inhibitor of HIV-1 even after 100 days of continuous exposure to human cells in a laboratory setting. Cole and his team are encouraged that only minimal resistance of the virus occurred during that time. Higher resistance levels make it more difficult to develop drugs to fight the virus because doses must be increased substantially over time.

The exact reason why resistance does not develop quickly with retrocyclin is unclear, but it may be a result of retrocyclin interacting with more than one target on both the cell and virus. Viruses that have to defeat more than one antiviral mechanism often develop resistance at a much slower pace.

The next phase of Cole's research will delve more into the mutations that HIV-1 can take in an effort to minimize them as much as possible. Many series of laboratory tests would need to be completed before clinical trials could begin no earlier than 2009.

Cole's findings were published in the June 1 issue of The Journal of Immunology, a top journal in the fields of immunology, molecular biology and microbiology.

Tom Evelyn | EurekAlert!
Further information:
http://www.ucf.edu
http://www.AIDS2006.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>