Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Failure of 'scout cells' may lead to cancer in transplant patients

10.08.2006
A serious form of cancer that occurs in some transplant patients may arise because cells that normally serve as scouts for the immune system become weakened, a new study suggests.

The cancer is caused by Epstein-Barr virus (EBV), a herpesvirus that infects more than 90 percent of Americans but is ordinarily kept under control by the immune system. That control can be lost in people whose immune system is suppressed to prevent rejection of a transplanted organ.

The cancer, called post-transplant lymphoproliferative disorder (PTLD), arises only in some transplant patients, but doctors don't know why.

This study, led by Ohio State University scientists, begins to answer that question.

The findings are published in the August issue of the American Journal of Transplantation.

“We've identified a mechanism that may explain why some patients develop PTLD and others don't,” says study leader Anne M. VanBuskirk, assistant professor of surgery and an OSU Comprehensive Cancer Center researcher.

“If we can understand the mechanism, perhaps we can discover how to prevent this type of cancer in transplant patients.”

The incidence of this cancer varies according to the organ transplanted, occurring in 1 to 2 percent of kidney transplant patients and in up to 20 percent of bone marrow and lung transplant patients. The disease usually arises within six months to a year after transplantation, and it can have a 70- to 80-percent mortality rate.

The study by VanBuskirk and her colleagues examines two types of immune cells: cells that act as scouts – scientists call them antigen-presenting cells – and memory T cells.

Scout cells detect the presence of viruses and other invaders and alert the immune system to the infection. Memory T cells are immune cells that have fought an earlier infection and remain ready to respond quickly should that infection occur again.

Most people are infected by EBV early in life and the immune system brings it under control, although the virus remains hidden in some cells of the body. If the infection flares up again, scout cells alert the memory T cells, which rapidly proliferate and hunt down and kill any cells that contain growing virus or have become cancerous.

“If memory T cells are re-stimulated properly, they can kill the cancerous cells before PTLD develops,” VanBuskirk says. “But if that re-stimulation is weak or is blocked, not all of the cells are destroyed and cancer can develop. So it is critical that these two cell types work together effectively.”

The present study suggests that PTLD arises because the scout cells can only weakly activate the memory T cells and stop their activation by other cells.

VanBuskirk and her team believe this happens because an immune-system substance causes changes in the scout cells, inhibiting their ability to warn memory T cells about the virus. That substance is called transforming growth factor-beta (TGFb).

The researchers discovered this by exposing healthy human scout cells to TGFb. Next, they combined the scout cells with T cells and PTLD-like cancer cells.

The T cells that grew alongside the scout cells exposed to TGFb were significantly less able to kill the cancer cells than were the T cells growing with scout cells not exposed to TGFb.

In addition, when scout cells from both groups were combined, the TGFb-exposed cells were stronger and prevented the unexposed scout cells from re-stimulating the memory T cells.

The present study follows earlier research led by VanBuskirk that suggests why only some transplant patients develop PTLD and not others.

The earlier study, published in a February 2005 issue of the journal Blood, suggested that the balance in the body of TGFb and a second immune substance called interferon gamma (IFNg) might influence development of the cancer.

The study showed that some people have a normal genetic difference that causes them to have lower levels of IFNg in the body and others to have higher levels.

The researchers then injected white blood cells from each of the two groups of people into immune-deficient mice. All the people were healthy and tested positive for EBV.

They found that white blood cells from people who had the genetic difference for lower IFNg?levels were more likely to cause EBV-related cancer in the mice than cells from people with the genetic difference for higher IFNg levels. They also found that blocking TGFb prevented the EBV-related cancer.

“We hypothesize that the balance between IFNg?and TGFb is probably important in determining whether or not the cancer develops,” VanBuskirk says.

In the new study, for example, adding IFNg to TGFb prevented the scout cells from changing and allowed them to strongly re-stimulate the memory T cells.

“If our hypothesis proves to be true,” VanBuskirk says, “it may one day be possible to identify transplant patients who are at greater risk for PTLD and to develop new therapies that prevent or treat the disease.”

Funding from the National Cancer Institute, the National Institute of Allergy and Infectious Diseases and the Roche Organ Transplantation Research Foundation supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>