Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unmasking nutrition's role in genes and birth defects

10.08.2006
Expectant mothers may someday get a personalized menu of foods to eat during pregnancy to complement their genetic makeup as a result of new research at Washington University School of Medicine in St. Louis. Researchers used transparent fish embryos to develop a way to discover how genes and diet interact to cause birth defects.

"By the time most women know they are pregnant, the development of the fetus' organs is essentially complete," said Bryce Mendelsohn, co-author and an M.D./Ph.D. student in the Medical Scientist Training Program at Washington University School of Medicine. "Since we currently do not understand the interaction between genetics and nutrition, the goal of this research was to understand how the lack of a specific nutrient, in this case copper, interacts with an embryo's genetics during early development."

Mendelsohn is doing the research in the laboratory of Jonathan D. Gitlin, M.D., the Helene B. Roberson Professor of Pediatrics at Washington University School of Medicine, director of genetics and genomic medicine at St. Louis Children's Hospital and scientific director of the Children's Discovery Institute.

Mendelsohn and collaborators Stephen L. Johnson, Ph.D., associate professor of genetics at the School of Medicine, and graduate student Chunyue Yin, working with Lila Solnica-Krezel, associate professor of biology at Vanderbilt University, studied the impact of copper metabolism on the development of zebrafish, a vertebrate that develops similarly to humans. Zebrafish have become staples of genetic research because the transparent embryos grow outside of the mother's body, which allows development to be easily observed. The study's results appear in the August issue of Cell Metabolism.

Using techniques designed to get to the core of how the body processes copper, the researchers identified a gene in zebrafish responsible for copper metabolism, called atp7a. They found that variants of the atp7a gene led to the abnormal metabolism of copper, which resulted in impaired development of the fish's notochord, similar to the spine in humans.

In humans, copper is found in all body tissues and is critical for maintaining stable iron levels, connective tissue formation, nerve cell function in the brain, hormone production and pigmentation. The trace metal is commonly found in shellfish, nuts, chocolate and liver.

"Whether a zebrafish embryo has enough copper to develop normally depends not only on the total amount of copper, but on how well this gene functions," Mendelsohn said.

Menkes disease is an inherited disorder of copper metabolism caused by a mutation in the human version of the ATP7A gene. Children who have Menkes disease have seizures, neuronal degeneration, abnormal bone development and kinky, colorless hair. The disease, although very rare, is untreatable and fatal.

The discovery of a vertebrate model to examine copper metabolism in early development will contribute to the understanding of the role of copper in structural birth defects such as scoliosis, an abnormal curvature of the spine. In addition, the availability of the zebrafish model of Menkes disease permits the development of novel therapeutic approaches in affected patients.

The researchers next plan to adapt these same methods to find other genes that affect the body's use of important nutrients during early development. This could provide insight into how poor nutrition and genetic variation act together to contribute to birth defects. "We already know that nutrition is a critical issue in birth defects and that folic acid is an essential supplement in some women for the prevention of spina bifida in the developing fetus," said Gitlin. "The ultimate goal of this research is to bring the power of genomic medicine to every woman. The knowledge of genetic variations serves as a unique, individual guide for providing the essential nutritional intake that will ensure a normal, healthy infant."

The research is also the first scientific discovery to emerge from the Children's Discovery Institute, a collaboration between St. Louis Children's Hospital and Washington University School of Medicine to fund unique research initiatives in child health.

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>