Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unmasking nutrition's role in genes and birth defects

10.08.2006
Expectant mothers may someday get a personalized menu of foods to eat during pregnancy to complement their genetic makeup as a result of new research at Washington University School of Medicine in St. Louis. Researchers used transparent fish embryos to develop a way to discover how genes and diet interact to cause birth defects.

"By the time most women know they are pregnant, the development of the fetus' organs is essentially complete," said Bryce Mendelsohn, co-author and an M.D./Ph.D. student in the Medical Scientist Training Program at Washington University School of Medicine. "Since we currently do not understand the interaction between genetics and nutrition, the goal of this research was to understand how the lack of a specific nutrient, in this case copper, interacts with an embryo's genetics during early development."

Mendelsohn is doing the research in the laboratory of Jonathan D. Gitlin, M.D., the Helene B. Roberson Professor of Pediatrics at Washington University School of Medicine, director of genetics and genomic medicine at St. Louis Children's Hospital and scientific director of the Children's Discovery Institute.

Mendelsohn and collaborators Stephen L. Johnson, Ph.D., associate professor of genetics at the School of Medicine, and graduate student Chunyue Yin, working with Lila Solnica-Krezel, associate professor of biology at Vanderbilt University, studied the impact of copper metabolism on the development of zebrafish, a vertebrate that develops similarly to humans. Zebrafish have become staples of genetic research because the transparent embryos grow outside of the mother's body, which allows development to be easily observed. The study's results appear in the August issue of Cell Metabolism.

Using techniques designed to get to the core of how the body processes copper, the researchers identified a gene in zebrafish responsible for copper metabolism, called atp7a. They found that variants of the atp7a gene led to the abnormal metabolism of copper, which resulted in impaired development of the fish's notochord, similar to the spine in humans.

In humans, copper is found in all body tissues and is critical for maintaining stable iron levels, connective tissue formation, nerve cell function in the brain, hormone production and pigmentation. The trace metal is commonly found in shellfish, nuts, chocolate and liver.

"Whether a zebrafish embryo has enough copper to develop normally depends not only on the total amount of copper, but on how well this gene functions," Mendelsohn said.

Menkes disease is an inherited disorder of copper metabolism caused by a mutation in the human version of the ATP7A gene. Children who have Menkes disease have seizures, neuronal degeneration, abnormal bone development and kinky, colorless hair. The disease, although very rare, is untreatable and fatal.

The discovery of a vertebrate model to examine copper metabolism in early development will contribute to the understanding of the role of copper in structural birth defects such as scoliosis, an abnormal curvature of the spine. In addition, the availability of the zebrafish model of Menkes disease permits the development of novel therapeutic approaches in affected patients.

The researchers next plan to adapt these same methods to find other genes that affect the body's use of important nutrients during early development. This could provide insight into how poor nutrition and genetic variation act together to contribute to birth defects. "We already know that nutrition is a critical issue in birth defects and that folic acid is an essential supplement in some women for the prevention of spina bifida in the developing fetus," said Gitlin. "The ultimate goal of this research is to bring the power of genomic medicine to every woman. The knowledge of genetic variations serves as a unique, individual guide for providing the essential nutritional intake that will ensure a normal, healthy infant."

The research is also the first scientific discovery to emerge from the Children's Discovery Institute, a collaboration between St. Louis Children's Hospital and Washington University School of Medicine to fund unique research initiatives in child health.

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>