Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists solve sour taste proteins

A team led by Duke University Medical Center researchers has discovered two proteins in the taste buds on the surface of the tongue that are responsible for detecting sour tastes.

While the scientific basis of other primary types of flavors, such as bitter and sweet, is known, this is the first study to define how humans perceive sour taste, said team senior scientist Hiroaki Matsunami, Ph.D., an assistant professor of molecular genetics and microbiology.

The identification of these proteins, called PKD1L3 and PKD2L1, could lead to ways to manipulate the perception of taste in order to fool the mouth that something sour, such as some children's medicines or health foods, tastes sweet, he said.

The team's findings appear in the online edition of the Proceedings of the National Academy of Sciences and will be published in the August 15, 2006, issue of the journal. The work was supported by the National Institutes of Health.

Mammals, including humans, can detect five primary flavors: bitter, sweet, salty, sour, and umami (known to the West as the taste of monosodium glutamate or MSG). Each taste bud on the tongue contains separate, distinct subsets of cells that specifically detect each taste -- sweet cells respond to sweet substances, bitter cells to bitter substances, and so on. Taste receptors, proteins on the surface of these cells, are responsible for detecting the "taste" of a particular food or chemical and triggering signals sent to the taste centers of the brain. In their study, the researchers used fluorescent tags to label the subsets of cells that are known to be responsible for bitter, sweet, and umami taste, as well as the subsets of cells that express PKD1L3 and PKD2L1. By "reading" the tags, they found no overlap between the subsets of cells involved in the first three tastes and the cells in which PKD1L3 and PKD2L1 are active. Matsunami said this result suggested that those proteins could be responsible for sensing either sour or salty taste.

In action, the two proteins combine to form "ion channels," porelike proteins in the membranes of taste cells, Matsunami said. These channels in turn control the flow of calcium ions, or electrically charged forms of calcium, in and out of the cells. This flow of ions essentially conditions the cell so that electrical signals can be sent to the brain in response to various stimuli.

The researchers stimulated mammalian cells expressing PDK1L3 and PKD2L1 with various taste chemicals to identify which stimuli caused the ion channels to open. To visualize the presence of calcium ions in the cell, the scientists loaded the cells with two calcium-sensitive fluorescent dyes -- one that glowed green when the calcium concentration was high, the other that glowed red when the concentration was low.

When they added sour-tasting acids to the cells, the ion channels went from closed to open, enabling calcium ions to flow in, increasing their concentration within the cell and changing the cells from red to green, Matsunami said. The channels remained closed when confronted with salt, sweeteners, or bitter solutions. The increased concentration of calcium in the cell may then trigger the signal that the brain eventually perceives as sour taste, he said.

Matsunami said he plans to use this finding to screen for chemicals that can block the function of these sour taste cells. The research also could lead to a better understanding of how the sense of taste functions neurologically, he said. "We still do not know what is happening in the brain -- that is, exactly how the brain would interpret the signals coming from the tongue to tell the difference between lemons and lemonade," Matsunami said. Future experiments using live animals as test models will be needed to answer remaining questions about taste sensation, he said.

Marla Vacek Broadfoot | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>