Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve sour taste proteins

09.08.2006
A team led by Duke University Medical Center researchers has discovered two proteins in the taste buds on the surface of the tongue that are responsible for detecting sour tastes.

While the scientific basis of other primary types of flavors, such as bitter and sweet, is known, this is the first study to define how humans perceive sour taste, said team senior scientist Hiroaki Matsunami, Ph.D., an assistant professor of molecular genetics and microbiology.

The identification of these proteins, called PKD1L3 and PKD2L1, could lead to ways to manipulate the perception of taste in order to fool the mouth that something sour, such as some children's medicines or health foods, tastes sweet, he said.

The team's findings appear in the online edition of the Proceedings of the National Academy of Sciences and will be published in the August 15, 2006, issue of the journal. The work was supported by the National Institutes of Health.

Mammals, including humans, can detect five primary flavors: bitter, sweet, salty, sour, and umami (known to the West as the taste of monosodium glutamate or MSG). Each taste bud on the tongue contains separate, distinct subsets of cells that specifically detect each taste -- sweet cells respond to sweet substances, bitter cells to bitter substances, and so on. Taste receptors, proteins on the surface of these cells, are responsible for detecting the "taste" of a particular food or chemical and triggering signals sent to the taste centers of the brain. In their study, the researchers used fluorescent tags to label the subsets of cells that are known to be responsible for bitter, sweet, and umami taste, as well as the subsets of cells that express PKD1L3 and PKD2L1. By "reading" the tags, they found no overlap between the subsets of cells involved in the first three tastes and the cells in which PKD1L3 and PKD2L1 are active. Matsunami said this result suggested that those proteins could be responsible for sensing either sour or salty taste.

In action, the two proteins combine to form "ion channels," porelike proteins in the membranes of taste cells, Matsunami said. These channels in turn control the flow of calcium ions, or electrically charged forms of calcium, in and out of the cells. This flow of ions essentially conditions the cell so that electrical signals can be sent to the brain in response to various stimuli.

The researchers stimulated mammalian cells expressing PDK1L3 and PKD2L1 with various taste chemicals to identify which stimuli caused the ion channels to open. To visualize the presence of calcium ions in the cell, the scientists loaded the cells with two calcium-sensitive fluorescent dyes -- one that glowed green when the calcium concentration was high, the other that glowed red when the concentration was low.

When they added sour-tasting acids to the cells, the ion channels went from closed to open, enabling calcium ions to flow in, increasing their concentration within the cell and changing the cells from red to green, Matsunami said. The channels remained closed when confronted with salt, sweeteners, or bitter solutions. The increased concentration of calcium in the cell may then trigger the signal that the brain eventually perceives as sour taste, he said.

Matsunami said he plans to use this finding to screen for chemicals that can block the function of these sour taste cells. The research also could lead to a better understanding of how the sense of taste functions neurologically, he said. "We still do not know what is happening in the brain -- that is, exactly how the brain would interpret the signals coming from the tongue to tell the difference between lemons and lemonade," Matsunami said. Future experiments using live animals as test models will be needed to answer remaining questions about taste sensation, he said.

Marla Vacek Broadfoot | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>