Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultrasound affects embryonic mouse brain development

The prolonged and frequent use of ultrasound on pregnant mice causes brain abnormalities in the developing mouse fetus, Yale School of Medicine researchers report August 7 in the Proceedings of the National Academy of Sciences.

"Proper migration of neurons during development is essential for normal development of the cerebral cortex and its function," said Pasko Rakic, M.D., chair of the Department of Neurobiology and senior author of the study. "We have observed that a small but significant number of neurons in the mouse embryonic brain do not migrate to their proper positions in the cerebral cortex following prolonged and frequent exposure to ultrasound."

Neurons in mammals multiply early in fetal development and then migrate to their final destinations following an inside-to-outside sequence. The destination defines the neurons' connectivity and function. It has been reported earlier by others that abnormal cortical function may result when this process is grossly altered by genetic or environmental factors such as alcohol and drugs.

The study reported on August 7 is believed to be the first to look at the possible effect of ultrasound waves (USW) on neuronal migration in mice at a late stage of embryonic brain development, when the migratory pathways are the longest and may be most vulnerable. The Yale team injected more than 335 fetal mice at embryonic day 16 with special markers to track neuronal development. Exposure to USW for 30 minutes or longer caused a small but statistically significant number of neurons to remain scattered within inappropriate cortical layers and/or in the adjacent white matter.

"The magnitude of dispersion of labeled neurons was highly variable but increased with duration of exposure to ultrasound waves," Rakic said. "These findings suggested the desirability of further work in this area. We do not have any evidence ourselves that USW cause behavioral effects in mice or have any effect on the developing human brain."

"Therefore," he continued, "I want to emphasize that our study in mice does not mean that use of ultrasound on human fetuses for appropriate diagnostic and medical purposes should be abandoned. On the contrary: ultrasound has been shown to be very beneficial in the medical context. Instead, our study warns against its non-medical use. We intend to conduct further research, which will focus on non-human primates, to see if a similar effect is occurring in the developing larger brains, which are more similar to humans. Those upcoming studies should give us information that will be more directly applicable to uses of USW in humans."

Jacqueline Weaver | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>