Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uranium 'pearls' before slime

09.08.2006
PNNL-led team discovers that bacteria roll out carpet of goo that converts deadly heavy metal into less threatening nano-spheres

Since the discovery a little more than a decade ago of bacteria that chemically modify and neutralize toxic metals without apparent harm to themselves, scientists have wondered how on earth these microbes do it.

For Shewanella oneidensis, a microbe that modifies uranium chemistry, the pieces are coming together, and they resemble pearls that measure precisely 5 nanometers across enmeshed in a carpet of slime secreted by the bacteria.

The pearl is uranium dioxide, or uraninite, which moves much less freely in soil than its soluble counterpart, a groundwater-contamination threat at nuclear waste sites.

The U.S. Department of Energy estimates that uranium contaminates more than 2,500 billion liters of groundwater nationwide; over the past decade, the agency has support research into the ability of naturally-occurring microbes that can halt the uranium's underground migration to prevent it from reaching streams used by plants, animals and people.

Assembling a battery of evidence, scientists have for the first time placed the bacterial enzymes responsible for converting uranium to uraninite at the scene of the slime, or "extracellular polymeric substance" (EPS), according to a study led by the DOE's Pacific Northwest National Laboratory in today's advance online edition of PLoS Biology.

"Shewanella really puts a lot of stuff outside the cell," said PNNL chief scientist Jim Fredrickson, the study's senior author. "It's very tactile compared with pathogens, which go into hiding to evade detection by the immune system."

Another oddity is Shewanella's ability to "breathe," or reduce, metals the way we human beings do oxygen. When oxygen is unavailable, Shewanella can pass excess energy during respiration in the form of electrons to metal and alter the metal's chemistry in the bargain--for instance, turning soluble uranium into solid, insoluble uraninite (uranium dioxide).

Fredrickson, PNNL staff scientist/lead author Matthew Marshall and colleagues wondered whether uranium-reducing components in that stuff outside the cell, the EPS, might help Shewanella seek out and lock up heavy metals.

To pose that question, which remains open, they first had to prove that the same metal-reducing enzymes--proteins called c-type cytochromes--associated with uraninite formation in the outer membrane could also be found outside the cell in the EPS.

This they did through a variety of experiments that included creating mutant strains unable to make outer-membrane cytochrome, or OMC, leading to an excess of uraninite particles forming only inside the cell, in the periplasm – the region between the microbe's cell and outer membrane. In nonmutants, on the other hand, OMC and uraninite were found mainly outside the cell in association with the EPS.

Collaborators from Argonne National Laboratory applied X-ray fluorescence microscopy at the Advanced Photon Source to show that iron, which is also found in OMC, was in the uraninite-EPS complex. Combining high-resolution microscopy and OMC-specific antibodies, the researchers repeatedly found the metal-reducing proteins in the uraninite-EPS complexes.

The authors noted that the OMC-containing EPS may be involved in the transfer of electrons outside the cell or is possibly a way the microbes shed the uraninite particles.

"Regardless," Fredrickson said, "the sticky EPS may behave like glue and bind the uranium particles to soil, further impeding its migration in the environment."

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>