Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uranium 'pearls' before slime

09.08.2006
PNNL-led team discovers that bacteria roll out carpet of goo that converts deadly heavy metal into less threatening nano-spheres

Since the discovery a little more than a decade ago of bacteria that chemically modify and neutralize toxic metals without apparent harm to themselves, scientists have wondered how on earth these microbes do it.

For Shewanella oneidensis, a microbe that modifies uranium chemistry, the pieces are coming together, and they resemble pearls that measure precisely 5 nanometers across enmeshed in a carpet of slime secreted by the bacteria.

The pearl is uranium dioxide, or uraninite, which moves much less freely in soil than its soluble counterpart, a groundwater-contamination threat at nuclear waste sites.

The U.S. Department of Energy estimates that uranium contaminates more than 2,500 billion liters of groundwater nationwide; over the past decade, the agency has support research into the ability of naturally-occurring microbes that can halt the uranium's underground migration to prevent it from reaching streams used by plants, animals and people.

Assembling a battery of evidence, scientists have for the first time placed the bacterial enzymes responsible for converting uranium to uraninite at the scene of the slime, or "extracellular polymeric substance" (EPS), according to a study led by the DOE's Pacific Northwest National Laboratory in today's advance online edition of PLoS Biology.

"Shewanella really puts a lot of stuff outside the cell," said PNNL chief scientist Jim Fredrickson, the study's senior author. "It's very tactile compared with pathogens, which go into hiding to evade detection by the immune system."

Another oddity is Shewanella's ability to "breathe," or reduce, metals the way we human beings do oxygen. When oxygen is unavailable, Shewanella can pass excess energy during respiration in the form of electrons to metal and alter the metal's chemistry in the bargain--for instance, turning soluble uranium into solid, insoluble uraninite (uranium dioxide).

Fredrickson, PNNL staff scientist/lead author Matthew Marshall and colleagues wondered whether uranium-reducing components in that stuff outside the cell, the EPS, might help Shewanella seek out and lock up heavy metals.

To pose that question, which remains open, they first had to prove that the same metal-reducing enzymes--proteins called c-type cytochromes--associated with uraninite formation in the outer membrane could also be found outside the cell in the EPS.

This they did through a variety of experiments that included creating mutant strains unable to make outer-membrane cytochrome, or OMC, leading to an excess of uraninite particles forming only inside the cell, in the periplasm – the region between the microbe's cell and outer membrane. In nonmutants, on the other hand, OMC and uraninite were found mainly outside the cell in association with the EPS.

Collaborators from Argonne National Laboratory applied X-ray fluorescence microscopy at the Advanced Photon Source to show that iron, which is also found in OMC, was in the uraninite-EPS complex. Combining high-resolution microscopy and OMC-specific antibodies, the researchers repeatedly found the metal-reducing proteins in the uraninite-EPS complexes.

The authors noted that the OMC-containing EPS may be involved in the transfer of electrons outside the cell or is possibly a way the microbes shed the uraninite particles.

"Regardless," Fredrickson said, "the sticky EPS may behave like glue and bind the uranium particles to soil, further impeding its migration in the environment."

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>