Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stimulation of the semicircular canals can artificially control human walking and balance

09.08.2006
By applying electrical currents across the heads of people while they walk, researchers have improved our understanding of how our vestibular system helps us maintain upright posture; at the same time, the researchers found that the stimulus could be applied in a way that allowed a person who was walking straight ahead to be steered by "remote control" without her balance being affected.

The findings are reported by Richard Fitzpatrick and Jane E. Butler of the Prince of Wales Medical Research Institute and the University of New South Wales, Australia, and Brian L. Day of University College London in the August 8th issue of Current Biology, published by Cell Press.

To investigate how the body's ability to sense head movements can contribute to balance control and guidance control--two critical aspects of bipedal locomotion--the researchers stimulated nerves that normally communicate signals from the so-called semicircular canals, structures that are part of the vestibular system that assists in orientation and balance. The researchers found that artificial stimulation of semiciruclar canal nerves afforded "remote control" that was accurate enough to keep subjects on pathways and avoiding obstacles while walking blindfolded through botanical gardens. The researchers also found that with a subject's head in another position, exactly the same stimulus could be used to disturb upright balance, causing the subject to lean in one direction or the other, but without having any effect on steering his walking.

Known as bipedalism, our habitual upright posture is unique in the animal kingdom and has arisen through specific complementary adaptations of the body and brain. It has been believed that the key to human balance has come from a precise sense of--and ability to align the body to--the direction of gravity.

However, the semicircular canals that the researchers stimulated to control walking and balance detect rotational movements of the head, not the direction of gravity. These findings therefore show that sensing movement is crucial for our upright posture.

The findings support interpretations made from fossil evidence of an evolutionary change in the development of the human semicircular canals. These evolutionary changes would allow for enhanced movement detection, and therefore also indicate that that controlled movement, rather than alignment to gravity, has been important for the development of modern human bipedalism.

This new work has important implications for understanding how the brain processes sensory signals.

According to the researchers, the findings indicate that from the single sensory organ that signals the movement of the head, the brain makes instant complex "mathematical" calculations to discard the parts not important to balance or steering, such as the movements we make when looking around, and then transforms the remaining signal into two components. One component is used to control steering, and the other to control balance. In a more practical view, this ability to produce illusions of movement, and then steer and balance the body by external control, leads the researchers to expect that stimulation techniques developed from the approach used in the new study will lead the way to diagnostic, therapeutic, and virtual-reality applications.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>